Background National governments worldwide have implemented nonpharmaceutical interventions to control the COVID-19 pandemic and mitigate its effects. Objective The aim of this study was to investigate the prediction of future daily national confirmed COVID-19 infection growth—the percentage change in total cumulative cases—across 14 days for 114 countries using nonpharmaceutical intervention metrics and cultural dimension metrics, which are indicative of specific national sociocultural norms. Methods We combined the Oxford COVID-19 Government Response Tracker data set, Hofstede cultural dimensions, and daily reported COVID-19 infection case numbers to train and evaluate five non–time series machine learning models in predicting confirmed infection growth. We used three validation methods—in-distribution, out-of-distribution, and country-based cross-validation—for the evaluation, each of which was applicable to a different use case of the models. Results Our results demonstrate high R 2 values between the labels and predictions for the in-distribution method (0.959) and moderate R 2 values for the out-of-distribution and country-based cross-validation methods (0.513 and 0.574, respectively) using random forest and adaptive boosting (AdaBoost) regression. Although these models may be used to predict confirmed infection growth, the differing accuracies obtained from the three tasks suggest a strong influence of the use case. Conclusions This work provides new considerations in using machine learning techniques with nonpharmaceutical interventions and cultural dimensions as metrics to predict the national growth of confirmed COVID-19 infections.
The introduction of dry electrodes for EEG measurements has opened up possibilities of recording EEG outside of standard clinical environments by reducing required preparation and maintenance. However, the signal quality of dry electrodes in comparison with wet electrodes has not yet been evaluated under activities of daily life (ADL) or high motion tasks. In this study, we compared the performances of foam-based and spring-loaded dry electrodes with wet electrodes under three different task conditions: resting state, walking, and cycling. Our analysis showed signals obtained by the 2 types of dry electrodes and obtained by wet electrodes displayed high correlation for all conditions, while being prone to similar environmental and electrode-based artifacts. Overall, our results suggest that dry electrodes have a similar signal quality in comparison to wet electrodes and may be more practical for use in mobile and real-time motion applications due to their convenience. In addition, we conclude that as with wet electrodes, post-processing can mitigate motion artifacts in ambulatory EEG acquisition.
The act of explaining across two parties is a feedback loop, where one provides information on what needs to be explained and the other provides an explanation relevant to this information. We apply a reinforcement learning framework which emulates this format by providing explanations based on the explainee's current mental model. We conduct novel online human experiments where explanations generated by various explanation methods are selected and presented to participants, using policies which observe participants' mental models, in order to optimize an interpretability proxy. Our results suggest that mental model-based policies (anchored in our proposed state representation) may increase interpretability over multiple sequential explanations, when compared to a random selection baseline. This work provides insight into how to select explanations which increase relevant information for users, and into conducting human-grounded experimentation to understand interpretability.
BackgroundNational governments have implemented non-pharmaceutical interventions to control and mitigate against the COVID-19 pandemic. A deep understanding of these interventions is required.ObjectiveWe investigate the prediction of future daily national Confirmed Infection Growths – the percentage change in total cumulative cases across 14 days – using metrics representative of non-pharmaceutical interventions and cultural dimensions of each country.MethodsWe combine the OxCGRT dataset, Hofstede’s cultural dimensions, and COVID-19 daily reported infection case numbers to train and evaluate five non-time series machine learning models in predicting Confirmed Infection Growth. We use three validation methods – in-distribution, out-of-distribution, and country-based cross-validation – for evaluation, each applicable to a different use case of the models.ResultsOur results demonstrate high R2 values between the labels and predictions for the in-distribution, out-of-distribution, and country-based cross-validation methods (0.959, 0.513, and 0.574 respectively) using random forest and AdaBoost regression. While these models may be used to predict the Confirmed Infection Growth, the differing accuracies obtained from the three tasks suggest a strong influence of the use case.ConclusionsThis work provides new considerations in using machine learning techniques with non-pharmaceutical interventions and cultural dimensions data for predicting the national growth of confirmed infections of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.