Whole-genome sequencing (WGS) of bacterial pathogens is widely conducted in microbiological, medical, and clinical research to explore genetic insights that could impact clinical treatment and molecular epidemiology. However, analyzing WGS data of bacteria can pose challenges for microbiologists, clinicians, and researchers, as it requires the application of several bioinformatics pipelines to extract genetic information from raw data. In this paper, we present BacSeq, an automated bioinformatic pipeline for the analysis of next-generation sequencing data of bacterial genomes. BacSeq enables the assembly, annotation, and identification of crucial genes responsible for multidrug resistance, virulence factors, and plasmids. Additionally, the pipeline integrates comparative analysis among isolates, offering phylogenetic tree analysis and identification of single-nucleotide polymorphisms (SNPs). To facilitate easy analysis in a single step and support the processing of multiple isolates, BacSeq provides a graphical user interface (GUI) based on the JAVA platform. It is designed to cater to users without extensive bioinformatics skills.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.