Spatiotemporal pH imaging using fluorescence lifetime imaging microscopy (FLIM) is an excellent technique for investigating dynamic (electro)chemical processes. However, probes that are responsive at high pH values are not available. Here, we describe the development and application of dedicated pH probes based on the 1-methyl-7-amino-quinolinium fluorophore. The high fluorescence lifetime and quantum yield, the high (photo)stability, and the inherent water solubility make the quinolinium fluorophore well suited for the development of FLIM probes. Due to the flexible fluorophore-spacer–receptor architecture, probe lifetimes are tunable in the pH range between 5.5 and 11. An additional fluorescence lifetime response, at tunable pH values between 11 and 13, is achieved by deprotonation of the aromatic amine at the quinolinium core. Probe lifetimes are hardly affected by temperature and the presence of most inorganic ions, thus making FLIM imaging highly reliable and convenient. At 0.1 mM probe concentrations, imaging at rates of 3 images per second, at a resolution of 4 μm, while measuring pH values up to 12 is achieved. This enables the pH imaging of dynamic electrochemical processes involving chemical reactions and mass transport.
Electrochemical CO 2 reduction poses a promising pathway to produce hydrocarbon chemicals and fuels without relying on fossil fuels. Gas diffusion electrodes allow high selectivity for desired carbon products at high current density by ensuring a sufficient CO 2 mass transfer rate to the catalyst layer. In addition to CO 2 mass transfer, the product selectivity also strongly depends on the local pH at the catalyst surface. In this work, we directly visualize for the first time the two-dimensional (2D) pH profile in the catholyte channel of a gas-fed CO 2 electrolyzer equipped with a bipolar membrane. The pH profile is imaged with operando fluorescence lifetime imaging microscopy (FLIM) using a pH-sensitive quinolinium-based dye. We demonstrate that bubble-induced mixing plays an important role in the Faradaic efficiency. Our concentration measurements show that the pH at the catalyst remains lower at −100 mA cm −2 than at −10 mA cm −2 , implying that bubble-induced advection outweighs the additional OH − flux at these current densities. We also prove that the pH buffering effect of CO 2 from the gas feed and dissolved CO 2 in the catholyte prevents the gas diffusion electrode from becoming strongly alkaline. Our findings suggest that gas-fed CO 2 electrolyzers with a bipolar membrane and a flowing catholyte are promising designs for scale-up and high-current-density operation because they are able to avoid extreme pH values in the catalyst layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.