The US Army Corps of Engineers (USACE), St. Louis District (MVS), manages multiple lock and dam structures on the Mississippi River. One of these, Melvin Price Locks and Dam (MPLD), was the subject of at least 12 allision events from downbound (southbound) vessels between January and November 2018 according to US Coast Guard (USCG) records, an unusually high number for this location. In an effort to understand how vessel operations change under varying river conditions, historical river gauge data and historical vessel position data for both upbound (northbound) and downbound (southbound) traffic were examined together to describe general approach paths for vessels at different water levels. Historic tracks for vessels involved in allision events are not included in this work because of ongoing investigations at the time of publication.
The US Army Corps of Engineers, St. Louis District, Applied River Engineering Center (AREC), in cooperation with the Operations Branch of the Mobile District, conducted a sediment management study of the Sunflower Bend reach of the Tombigbee River, between River Miles 81.0 and 76.0, near Jackson, AL. The objective of the study was to look at sediment management alternatives to alleviate or eliminate repetitive maintenance dredging. These alternatives involved various river engineering measures including dikes, weirs, channel armoring, disposal armoring, and combinations thereof. A physical Hydraulic Sediment Response model was used to examine the sediment response resulting from these alternatives. During model testing, and after discussions with AREC and Mobile Operations Division staff, a second objective was established to define existing non-erodible bed materials that were located throughout the reach. This was conducted to examine the merits of strategically removing these erosion resistant materials in the river as an additional dredging/excavation alternative. The most favorable alternatives involved removing bedload sand and consolidated clay material from between River Miles 79.1 and 78.0 to improve navigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.