Plant diseases are accountable for economic losses in an agricultural country. The manual process of plant diseases diagnosis is a key challenge from last one decade; therefore, researchers in this area introduced automated systems. In this research work, automated system is proposed for citrus fruit diseases recognition using computer vision technique. The proposed method incorporates five fundamental steps such as preprocessing, disease segmentation, feature extraction and reduction, fusion, and classification. The noise is being removed followed by a contrast stretching procedure in the very first phase. Later, watershed method is applied to excerpt the infectious regions. The shape, texture, and color features are subsequently computed from these infection regions. In the fourth step, reduced features are fused using serial‐based approach followed by a final step of classification using multiclass support vector machine. For dimensionality reduction, principal component analysis is utilized, which is a statistical procedure that enforces an orthogonal transformation on a set of observations. Three different image data sets (Citrus Image Gallery, Plant Village, and self‐collected) are combined in this research to achieving a classification accuracy of 95.5%. From the stats, it is quite clear that our proposed method outperforms several existing methods with greater precision and accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.