This study was conducted to collect data on specific volatile fatty acids (produced from soft tissue decomposition) and various anions and cations (liberated from soft tissue and bone), deposited in soil solution underneath decomposing human cadavers as an aid in determining the “time since death.” Seven nude subjects (two black males, a white female and four white males) were placed within a decay research facility at various times of the year and allowed to decompose naturally. Data were amassed every three days in the spring and summer, and weekly in the fall and winter. Analyses of the data reveal distinct patterns in the soil solution for volatile fatty acids during soft tissue decomposition and for specific anions and cations once skeletonized, when based on accumulated degree days. Decompositional rates were also obtained, providing valuable information for estimating the “maximum time since death.” Melanin concentrations observed in soil solution during this study also yields information directed at discerning racial affinities. Application of these data can significantly enhance “time since death” determinations currently in use.
This study, conducted at the University of Tennessee's Anthropological Research Facility (ARF), describes the establishment of the Decompositional Odor Analysis (DOA) Database for the purpose of developing a man-portable, chemical sensor capable of detecting clandestine burial sites of human remains, thereby mimicking canine olfaction. This “living” database currently spans the first year and a half of burial, providing identification, chemical trends and semi-quantitation of chemicals liberated below, above and at the surface of graves 1.5 to 3.5 ft deep (0.45 to 1.0 m) for four individuals. Triple sorbent traps (TSTs) were used to collect air samples in the field and revealed eight major classes of chemicals containing 424 specific volatile compounds associated with burial decomposition. This research is the first step toward identification of an “odor signature” unique to human decomposition with projected ramifications on cadaver dog training procedures and in the development of field portable analytical instruments which can be used to locate human remains buried in shallow graves.
This study, conducted at the University of Tennessee’s Anthropological Research Facility (ARF), lists and ranks the primary chemical constituents which define the odor of decomposition of human remains as detected at the soil surface of shallow burial sites. Triple sorbent traps were used to collect air samples in the field and revealed eight major classes of chemicals which now contain 478 specific volatile compounds associated with burial decomposition. Samples were analyzed using gas chromatography‐mass spectrometry (GC‐MS) and were collected below and above the body, and at the soil surface of 1.5–3.5 ft. (0.46–1.07 m) deep burial sites of four individuals over a 4‐year time span. New data were incorporated into the previously established Decompositional Odor Analysis (DOA) Database providing identification, chemical trends, and semi‐quantitation of chemicals for evaluation. This research identifies the “odor signatures” unique to the decomposition of buried human remains with projected ramifications on human remains detection canine training procedures and in the development of field portable analytical instruments which can be used to locate human remains in shallow burial sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.