Ionically cross-linked polyelectrolyte complexes (PECs) of anionic poly(sodium 4-styrene sulfonate) (PSS) and cationic poly(diallyldimethylammonium chloride) (PDADMAC), xPSS.(1-x)PDADMAC, with molar fractions x ranging from 0.30 to 0.70, were prepared and subsequently dried. The PEC samples were analyzed by differential scanning calorimetry, and the ionic conductivity sigmadc of the samples was measured as a function of temperature by means of impedance spectroscopy. The thermograms display an endothermic peak in the temperature range of 90-143 degrees C, which is attributed to a glass transition of the PEC. The glass transition temperature Tg has a symmetric x dependence with a minimum at x=0.50. The temperature dependence of sigmadcT is not affected by the glass transition. The ionic conductivity of the samples before drying is three orders of magnitude larger than sigmadc after drying; nevertheless, their activation enthalpies are identical. Arrhenius parameters obtained from the systematic study of several PEC compositions are discussed. The ionic conductivity of the PSS-rich samples is significantly higher than sigmadc of PDADMAC-rich samples. This implies a relatively high Na+ mobility as compared to Cl(-) mobility in PEC. In contrast to the symmetric x dependence of Tg, the conductivity of PEC increases and the activation enthalpy decreases with increasing x in the investigated composition range. A strong x dependence of sigmadc is observed for PSS-rich PEC, which is attributed to a significant variation in the mobility of the charge carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.