We consider circuit complexity in certain interacting scalar quantum field theories, mainly focusing on the φ 4 theory. We work out the circuit complexity for evolving from a nearly Gaussian unentangled reference state to the entangled ground state of the theory. Our approach uses Nielsen's geometric method, which translates into working out the geodesic equation arising from a certain cost functional. We present a general method, making use of integral transforms, to do the required lattice sums analytically and give explicit expressions for the d = 2, 3 cases. Our method enables a study of circuit complexity in the epsilon expansion for the Wilson-Fisher fixed point. We find that with increasing dimensionality the circuit depth increases in the presence of the φ 4 interaction eventually causing the perturbative calculation to breakdown. We discuss how circuit complexity relates with the renormalization group.1 bhattacharyya.arpan@yahoo.com 2 arvinduniqc@gmail.com 3 asinha@iisc.ac.in 5 Note that [λ] = 4 and [λ] = 4 − d in our notation. While introducing Ω seems redundant, it will facilitate a comparision with the coupled harmonic oscillator case as in [14] and we will continue using it.
In this work, we propose a testing procedure to distinguish between the different approaches for computing complexity. Our test does not require a direct comparison between the approaches and thus avoids the issue of choice of gates, basis, etc. The proposed testing procedure employs the informationtheoretic measures Loschmidt echo and Fidelity; the idea is to investigate the sensitivity of the complexity (derived from the different approaches) to the evolution of states. We discover that only circuit complexity obtained directly from the wave function is sensitive to time evolution, leaving us to claim that it surpasses the other approaches. We also demonstrate that circuit complexity displays a universal behaviour-the complexity is proportional to the number of distinct Hamiltonian evolutions that act on a reference state. Due to this fact, for a given number of Hamiltonians, we can always find the combination of states that provides the maximum complexity; consequently, other combinations involving a smaller number of evolutions will have less than maximum complexity and, hence, will have resources. Finally, we explore the evolution of complexity in non-local theories; we demonstrate the growth of complexity is sustained over a longer period of time as compared to a local theory.
In this work, we formulate a path-integral optimization for two dimensional conformal field theories perturbed by relevant operators. We present several evidences how this optimization mechanism works, based on calculations in free field theories as well as general arguments of RG flows in field theories. Our optimization is performed by minimizing the path-integral complexity functional that depends on the metric and also on the relevant couplings. Then, we compute the optimal metric perturbatively and find that it agrees with the time slice of the hyperbolic metric perturbed by a scalar field in the AdS/CFT correspondence. Last but not the least, we estimate contributions to complexity from relevant perturbations.
We consider holographic entanglement entropy in higher derivative gravity theories. Recently Lewkowycz and Maldacena arXiv:1304.4926 have provided a method to derive the equations for the entangling surface from first principles. We use this method to compute the entangling surface in four derivative gravity. Certain interesting differences compared to the two derivative case are pointed out. For Gauss-Bonnet gravity, we show that in the regime where this method is applicable, the resulting equations coincide with proposals in the literature as well as with what follows from considerations of the stress tensor on the entangling surface. Finally we demonstrate that the area functional in Gauss-Bonnet holography arises as a counterterm needed to make the Euclidean action free of power law divergences.Comment: 24 pages, 1 figure. v3: typos corrected, published versio
We propose a new diagnostic for quantum chaos. We show that time evolution of complexity for a particular type of target state can provide equivalent information about the classical Lyapunov exponent and scrambling time as out-of-time-order correlators. Moreover, for systems that can be switched from a regular to unstable (chaotic) regime by a tuning of the coupling constant of the interaction Hamiltonian, we find that the complexity defines a new time scale. We interpret this time scale as recording when the system makes the transition from regular to chaotic behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.