Plasmonic oligomers can provide profound Fano resonance in their scattering responses. The sub-radiant mode of Fano resonance can result in significant near-field enhancement due to its light trapping capability into the so-called hotspots. Appearance of these highly localized hotspots at the excitation and/or Stokes wavelengths of the analytes makes such oligomers promising SERS active substrates. In this work, we numerically and experimentally investigate optical properties of two disk-type gold oligomers, which have different strength and origin of Fano resonance. Raman analysis of rhodamine 6G and adenine with the presence of the fabricated oligomers clearly indicates that an increment in the strength of Fano resonance can improve the Raman enhancement of an oligomer significantly. Therefore, by suitable engineering of Fano lineshape, one can achieve efficient SERS active substrates with spatially localized hotspots.
Optical constants of organic thin films can be evaluated using the Lorentz oscillator model (LOM) which fails to fit inhomogeneously broadened absorption of highly concentrated molecular films. In modified LOM (MLOM), the inhomogeneous broadening is implemented through a frequency-dependent adjustable broadening function. In this work, we evaluate the optical constants of rhodamine 6G doped poly-vinyl alcohol thin films with varying doping concentration (including also extensively high concentrations) using MLOM, which outperforms LOM by showing a better agreement with the experimental results. Our proposed method provides a way to accurately determine optical constants of isotropic organic thin films only from their absorption spectra without spectroscopic ellipsometry.
Strong coupling between molecules and confined light modes of optical cavities to form polaritons can alter photochemistry, but the origin of this effect remains largely unknown. While theoretical models suggest a suppression of photochemistry due to the formation of new polaritonic potential energy surfaces, many of these models do not account for the energetic disorder among the molecules, which is unavoidable at ambient conditions. Here, we combine experiments and simulations to show that for an ultra-fast photochemical reaction such thermal disorder prevents the modification of the potential energy surface and that suppression is due to radiative decay of the lossy cavity modes. We demonstrate that by increasing the coupling strength we can reduce such losses and enhance reactivity of the strongly coupled system, in contrast to the theoretical paradigm, which would predict stronger suppression. We also show that the excitation spectrum under strong coupling is a product of the excitation spectrum of the ”bare” molecules and the absorption spectrum of the molecule-cavity system, suggesting that polaritons can act as gateways for channeling an excitation into a molecule, which then reacts ”normally”. Our results therefore imply that strong coupling provides a means to tune the action spectrum of a molecule, rather than to change the reaction.
Plasmonic nanostructures are widely utilized in surface-enhanced Raman spectroscopy (SERS) from ultraviolet to near-infrared applications. Periodic nanoplasmonic systems such as plasmonic gratings are of great interest as SERS-active substrates due to their strong polarization dependence and ease of fabrication. In this work, we modelled a silver grating that manifests a subradiant plasmonic resonance as a dip in its reflectivity with significant near-field enhancement only for transverse-magnetic (TM) polarization of light. We investigated the role of its fill factor, commonly defined as a ratio between the width of the grating groove and the grating period, on the SERS enhancement. We designed multiple gratings having different fill factors using finite-difference time-domain (FDTD) simulations to incorporate different degrees of spectral detunings in their reflection dips from our Raman excitation (488 nm). Our numerical studies suggested that by tuning the spectral position of the optical resonance of the grating, via modifying their fill factor, we could optimize the achievable SERS enhancement. Moreover, by changing the polarization of the excitation light from transverse-magnetic to transverse-electric, we can disable the optical resonance of the gratings resulting in negligible SERS performance. To verify this, we fabricated and optically characterized the modelled gratings and ensured the presence of the desired detunings in their optical responses. Our Raman analysis on riboflavin confirmed that the higher overlap between the grating resonance and the intended Raman excitation yields stronger Raman enhancement only for TM polarized light. Our findings provide insight on the development of fabrication-friendly plasmonic gratings for optimal intensification of the Raman signal with an extra degree of control through the polarization of the excitation light. This feature enables studying Raman signal of exactly the same molecules with and without electromagnetic SERS enhancements, just by changing the polarization of the excitation, and thereby permits detailed studies on the selection rules and the chemical enhancements possibly involved in SERS.
Fiber lasers having high power and high beam quality are popular for various industrial, biomedical, defense and scientific applications. Rare earth doped active fibers are used as gain medium in fiber laser system. The core region of these fibers is doped with different rare earth elements like erbium (Er), ytterbium (Yb) and thulium (Tm). In this paper, observation of mode profiles and calculation of modal power of different step index fibers has been done with the help of COMSOL and MATLAB. The analysis was done at 1064nm wavelength as these fibers are Yb-doped active fiber having an operation region near 1 micron for laser and amplifier applications. As we move to larger core diameter active fiber to achieve high power, the higher order modes starts carrying more power. To analyze this, fractional power of different transverse modes in the fiber both core and cladding region was calculated. Fibers were modeled in COMSOL and analyzed using MATLAB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.