SummaryFactors associated with agricultural intensification, for example, loss of seminatural vegetation and pesticide use has been shown to adversely affect the bee community. These factors may impact the bee community differently at different landscape scales. The scale dependency is expected to be more pronounced in heterogeneous landscapes. However, the scale‐dependent response of the bee community to drivers of its decline is relatively understudied, especially in the tropics where the agricultural landscape is often heterogeneous. This study looked at effects of agricultural intensification on bee diversity at patch and landscape scales in a tropical agricultural landscape. Wild bees were sampled using 12 permanent pan trap stations. Patch and landscape characteristics were measured within a 100 m (patch scale) and a 500 m (landscape scale) radius of pan trap stations. Information on pesticide input was obtained from farmer surveys. Data on vegetation cover, productivity, and percentage of agricultural and fallow land (FL) were collected using satellite imagery. Intensive areas in a bee‐site network were less specialized in terms of resources to attract rare bee species while the less intensive areas, which supported more rare species, were more vulnerable to disturbance. A combination of patch quality and diversity as well as pesticide use regulates species diversity at the landscape scale (500 m), whereas pesticide quantity drove diversity at the patch scale (100 m). At the landscape scale, specialization of each site in terms of resources for bees increased with increasing patch diversity and FL while at the patch scale specialization declined with increased pesticide use. Bee functional groups responded differentially to landscape characteristics as well as pesticide use. Wood nesting bees were negatively affected by the number of pesticides used but other bee functional groups were not sensitive to pesticides. Synthesis and Applications: Different factors affect wild bee diversity at the scale of landscape and patch in heterogeneous tropical agricultural systems. The differential response of bee functional groups to agricultural intensification underpins the need for guild‐specific management strategies for wild bee conservation. Less intensively farmed areas support more rare species and are vulnerable to disturbance; consequently, these areas should be prioritized for conservation to maintain heterogeneity in the landscape. It is important to conserve and restore seminatural habitats to maintain complexity in the landscapes through participatory processes and to regulate synthetic chemical pesticides in farm operations to conserve the species and functional diversity of wild bees.
The generation and study of metal-hydroperoxo/metal-peroxo (LCu(II)-OOH or LCu(II)-OO˙) complexes is a fascinating area of research of many chemical and biochemical researchers, because of their involvement as active intermediates in many biological and industrial catalytic oxidation processes. For this purpose we have designed a bulky hexa-coordinating ligand with potential N4O2 donor atoms which could provide an opportunity to synthesize a mononuclear Cu(II) complex with an aim to utilize it in the catalytic oxidation of aromatic hydrocarbons by an environmentally benign oxidant, H2O2. The Cu(II) complex (1) was structurally characterized and found to have square-planar geometry with the two pyrazolyl groups remaining in dangling mode. A novel mononuclear complex [Et3NH][LCu(II)-OOH] (2) was found to form in the reaction between 1 and H2O2 in the presence of Et3N. The presence of this dangling groups favours the stability of hydroperoxo species, [LCu-OOH](-) (2) through H-bonding with the coordinated phenoxo oxygen atom, which was confirmed by ESI-MS(+) and MS(-) (m/z) mass analysis and DFT calculations. This complex was found to be thermally stable at room temperature [k(d) = (5.67 ± 0.03) × 10(-5) s(-1) at 25 °C] and may be due to the formation of O-O-H···O(phenoxo) H-bonding as delineated by the DFT calculations. Complex 1 was found to be an efficient catalyst for the oxidation of aromatic hydrocarbons to the corresponding aldehyde and alcohol in 2:1 mole ratio with TON ~300.
Aminoacyl-tRNA synthetases (aaRSs) are key enzymes in the mRNA translation machinery, yet they possess numerous non-canonical functions developed during the evolution of complex organisms. The aaRSs and aaRS-interacting multi-functional proteins (AIMPs) are continually being implicated in tumorigenesis, but these connections are often limited in scope, focusing on specific aaRSs in distinct cancer subtypes. Here, we analyze publicly available genomic and transcriptomic data on human cytoplasmic and mitochondrial aaRSs across many cancer types. As high-throughput technologies have improved exponentially, large-scale projects have systematically quantified genetic alteration and expression from thousands of cancer patient samples. One such project is the Cancer Genome Atlas (TCGA), which processed over 20,000 primary cancer and matched normal samples from 33 cancer types. The wealth of knowledge provided from this undertaking has streamlined the identification of cancer drivers and suppressors. We examined aaRS expression data produced by the TCGA project and combined this with patient survival data to recognize trends in aaRSs’ impact on cancer both molecularly and prognostically. We further compared these trends to an established tumor suppressor and a proto-oncogene. We observed apparent upregulation of many tRNA synthetase genes with aggressive cancer types, yet, at the individual gene level, some aaRSs resemble a tumor suppressor while others show similarities to an oncogene. This study provides an unbiased, overarching perspective on the relationship of aaRSs with cancers and identifies certain aaRS family members as promising therapeutic targets or potential leads for developing biological therapy for cancer.
A combination of a single crystal X-ray diffraction study and density functional theory calculations has been applied to a bidentate Schiff base compound to elucidate different cooperative non-covalent interactions involved in the stabilization of the keto form over the enol one in the solid state. The single crystal X-ray structure reveals a remarkable supramolecular assembly of the keto form through a cyclic hydrogen bonded dimeric motif. The most interesting feature in the supramolecular assembly is the formation of a 'dimer of dimer' motif by π···π, CH···π and N···O/O···O interactions in which the π···π interaction involving the aromatic phenyl ring and the intramolecularly hydrogen bonded pseudo-aromatic ring of the keto form lying just above or below the phenyl ring of the other dimer seems to be unprecedented. The optimized geometry of the hydrogen bonded dimeric motif of the keto form of the organic molecule has been obtained by DFT calculations and agrees very well with that found within the crystalline state. The X-ray crystallographic geometry of the 'dimer of dimer' has also been computed, which shows that in the HOMO, the π electrons are localized in the phenyl rings away from each other, while in the LUMO, there is a strong π-π interaction between the phenyl ring of one dimer with the pseudo-aromatic ring of another dimer with an energy estimated to be 7.95 kJ mol(-1). Therefore, on HOMO → LUMO excitation there is localization of π electrons in the central part of the complex moiety which plays a stabilizing role of the dimer of dimer motif in the solid state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.