The general observation of Marcus inverted region (MIR) for bimolecular electron-transfer (ET) reactions in different viscous media, e.g., micelles, reverse micelles, vesicles, ionic liquids, DNA scaffold, etc. has been doubted in some recent publications arguing limitations in Stern-Volmer (SV) analysis to account for the static and transient stages of quenching in these slow diffusing media. Thus, following a theoretical treatment based on a spherically symmetric diffusion equation coupled with conventional Marcus ET description, it has been suggested that the MIR observed in viscous media arises due to the inadequate consideration of different quenching regimes and also due to the differential excited-state lifetimes of the fluorophores used than a genuine one (J. Am. Chem. Soc. 2012, 134, 11396). However, the overall treatment in this study is severely compromised by setting the minimum solvent reorganization energy (λs) to ∼0.96 eV while fitting the experimental data, which unambiguously suggests that the inversion in ET rate will never appear in the exergonicity (-ΔG(0)) range of 0.16 to 0.71 eV, as is the case for the studied ET systems. Besides, the applicability of the conventional Marcus ET model (instead of Sumi-Marcus two-dimensional ET model) in such extremely viscous media with exceptionally slow solvent response is highly debatable and perhaps is the main cause of the failure in fitting the experimental data quite satisfactorily. In the present study involving ultrafast ET quenching for coumarin derivatives by dimethylaniline donor in viscous ionic liquid media, we demonstrate clear MIR for the intrinsic ET rates, directly obtained from the ultrafast decay components of 1-10 ps, a time scale in which diffusion of reactants is negligible and the ET rates are either faster than or, at the most, competitive with the solvent reorganization. The appearance of MIR at ΔG(0) ∼ -0.5 eV, significantly lower than expected from the λs value, further substantiate the nonapplicability of conventional ET description but certainly advocate for the applicability of the Sumi-Marcus two-dimensional ET model in such media. Moreover, no obvious correlation has experimentally been observed between the excited-state lifetimes of the coumarin derivatives and the ET rates for a large number of dyes used in the present study. On the basis of the present results and drawing inferences from reported literatures in viscous media, we conclude that not only is the appearance of MIR very genuine but also the mechanistic model necessary to account the observed facts for the bimolecular ET reactions in a viscous medium is the two-dimensional ET description, which deals with an extremely slow relaxing solvent coordinate and a fast relaxing intramolecular coordinate to describe the ET reactions.
An exhaustive kinetic analysis has been carried out to offer the convincing evidence of the involvement of the oil-water interface in guiding "on water organic reaction" mechanism. We have tuned the interface to prove its indispensable efficacy to make on water reaction a unique type among water mediated organic reactions. Sensitive techniques have established the preferential solvation of polarizable ions at the water surface. The experimental methods have been developed to control the molecular structure of oil-water interface in situ. Temperature-dependent analyses have also been presented to understand the enthalpic and entropic modifications of the interfacial water molecules during a heterogeneous reaction. Both of our kinetic and thermodynamic outcomes have univocally established that the hydrogen-bonding ability of the surface water molecules plays a critical role in deciding the on water organic reaction mechanism. The results have important implications on understanding the role of small water molecules adjacent to the reactants during the reactions discussed in this investigation.
The excited-state intramolecular proton-transfer (ESIPT) process in 1,8-dihydroxyanthraquinone (18DHAQ) dye has been investigated in protic ionic liquid (PIL) solvents using photochemical measurements. The results demonstrate noteworthy modulations in both steady-state and time-resolved emission characteristics of excited normal (N*) and tautomeric (T*) forms of the dye. That the emission of T* increases unexpectedly upon increasing solvent viscosity indicates that subsequent to the initial forward ESIPT, there is also a relatively slower back ESIPT process involved for the excited dye. It is inferred that the propensity of this back ESIPT process is determined by the dynamics of the diffusive solvent relaxation, a process that is known to be strongly viscosity-dependent in ionic liquids. Evidence of both forward and back ESIPT for the dye has been obtained from femtosecond fluorescence up-conversion measurements. While an unusually fast forward ESIPT is clearly observed in all of the PILs studied, the uncommon back ESIPT process is distinctly indicated in PIL solvents having lower viscosities, certainly due to reasonably fast diffusive solvent relaxation in these solvents that causes a temporal modulation in the energies of the normal and tautomeric forms within a reasonably short time and thereby brings down the energy of N* compared to that of T*, triggering the back ESIPT process. Observation of solvent-viscosity-dependent back ESIPT is an intriguing finding for the present study as to the best of our knowledge, such a behavior has so far not been reported in the literature for the ESIPT reaction.
The use of the ionic liquid/n-hexane interface as a new class of reaction medium for the Diels-Alder reaction gives large rate enhancements of the order of 10(6) to 10(8) times and high stereoselectivity, as compared to homogeneous media. The rate enhancement is attributed to the H-bonding abilities and polarities of the ionic liquids, whereas the hydrophobicity of ionic liquids was considered to be the factor in controlling stereoselectivity.
Femtosecond transient IR absorption spectroscopy was used to probe the decay mechanism of electronically excited thymine (a naturally occurring pyrimidine base in DNA) dissolved in an ionic liquid ([Bmim][BF 4 ]) or CD 3 CN after the absorption of UV light (267 nm). In both solvents, an absorption band grew on a picosecond timescale, along with decaying bleach and evolving red-shifted absorption signals. A population analysis of the observed kinetic data suggested that most of the photoexcited thymine underwent a sub-picosecond non-radiative relaxation to the vibrationally hot ground electronic state. About 4% (16%) of the excited thymine in the ionic liquid (CD 3 CN) relaxed to an intermediate electronic state, which relaxed into a low-lying triplet state by intersystem crossing (ISC) (ISC did not relax to the ground electronic state within the experimental period (1 ns)). The low ISC yield for thymine in an ionic liquid was correlated with molecular properties of the solvent. This observation is significant because the ISC to triplet state transition for excited thymine has been considered as a precursor to cyclobutane-pyrimidine dimer formation, which led to functional damage of the base after UV absorption. This finding may shed light on the photostability of DNA in ionic liquids. Keywords: Femtosecond infrared spectroscopy, Thermal relaxation, Cyclobutane-pyrimidine dimer,Ionic liquid, Photostability of thymine DNA is a prime biological molecule because it contains genetic instructions for the growth and function of the cells that constitute all living organisms. 1,2 Alterations to the genetic integrity affect normal life processes. 2 In addition to its biological significance, DNA is increasingly used as a powerful nanotechnology tool due to its conformational polymorphism (e.g., as a hybrid catalyst in the synthesis of highly enantioselective and asymmetric molecules). 3-6 DNA structure and stability preservation is hindered by a lack of appropriate media. 7,8 Aqueous solutions are considered an important DNA preserver for short-and long-term applications 8,9 ; however, the low solubility of organic reactants in water hinders further efficient use of aqueous solutions.In this context, ionic liquids (ILs) have been established as a unique non-aqueous solvent to preserve DNA for longterm use at ambient temperatures. 10,11 ILs contain an organic cation and an inorganic or organic anion with minimal symmetry; they remain liquid below 373 K. 12-15 ILs possess unique green solvent characteristics, such as a negligible vapor pressure, low flammability, wide solubility range, chemical inertness, and wide electrochemical window. 13,16,17 Electrostatic interactions among the IL cation and DNA (i.e., hydrophobic interactions between the hydrocarbon chains of the IL and the bases of DNA) and intermolecular hydrogen bonding between the anion of the IL and the bases of DNA have been established as the main causes for the high stability of DNA in ILs. 11,18-21 So far, examinations of the interactions between DNA and ILs ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.