Student performance is a critical factor in determining a university's reputation because it has a negative effect on student retention. Students who do not perform well in a course are more likely to drop out from their programmes before graduating. Many students who enrol in Computing Science programmes struggle to find success because it is considered a difficult discipline. In this study, a sample of 918 observations were selected containing demographic and academic information about students enrolled in a first-year undergraduate Computing Science course at a university. Classification algorithms such as Decision Tree, Random Forest, Naïve Bayes and Support Vector Machine were used to build predictive models to determine whether a student will pass or fail the course. The results showed the Random Forest algorithms are capable of producing better predictive performance compared with traditional Decision Tree algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.