This paper aims to evince the corrections on the black string warped horizon in the braneworld paradigm, and their drastic physical consequences, as well as to provide subsequent applications in astrophysics. Our analysis concerning black holes on the brane departs from the Schwarzschild case, where the black string is unstable to large-scale perturbation. The cognizable measurability of the black string horizon corrections due to braneworld effects is investigated, as well as their applications in the variation of quasars luminosity. We delve into the case wherein two solutions of Einstein's equations proposed by Casadio, Fabbri, and Mazzacurati, regarding black hole metrics presenting a post-Newtonian parameter measured on the brane. In this scenario, it is possible to analyze purely the braneworld corrected variation in quasars luminosity, by an appropriate choice of the post-Newtonian parameter that precludes Hawking radiation on the brane: the variation in quasars luminosity is uniquely provided by pure braneworld effects, as the Hawking radiation on the brane is suppressed.
The persisting consistency of ever more accurate observational data with the predictions of the standard ΛCDM cosmological model puts severe constraints on possible alternative scenarios, but still does not shed any light on the fundamental nature of the cosmic dark sector. As large deviations from a ΛCDM cosmology are ruled out by data, the path to detect possible features of alternative models goes necessarily through the definition of cosmological scenarios that leave almost unaffected the background and -to a lesser extent -the linear perturbations evolution of the universe. In this context, the Multi-coupled DE (McDE) model was proposed by Baldi [9] as a particular realization of an interacting Dark Energy field characterized by an effective screening mechanism capable of suppressing the effects of the coupling at the background and linear perturbation level. In the present paper, for the first time, we challenge the McDE scenario through a direct comparison with real data, in particular with the luminosity distance of Type Ia supernovae. By studying the existence and stability conditions of the critical points of the associated background dynamical system, we select only the cosmologically consistent solutions, and confront their background expansion history with data. Confirming previous qualitative results, the McDE scenario appears to be fully consistent with the adopted sample of Type Ia supernovae, even for coupling values corresponding to an associated scalar fifth-force about four orders of magnitude stronger than standard gravity. Our analysis demonstrates the effectiveness of the McDE background screening, and shows some new non-trivial asymptotic solutions for the future evolution of the universe. Clearly, linear perturbation data and, even more, nonlinear structure formation properties are expected to put much tighter constraints on the allowed coupling range. Nonetheless, our results show how the background expansion history might be highly insensitive to the fundamental nature and to the internal complexity of the dark sector.PACS numbers: 95.36.+x, 95.35.+d, 97.60.Bw, 98.80.Es.
The Multi-coupled Dark Energy (McDE) scenario has been recently proposed as a specific example of a cosmological model characterized by a non-standard physics of the dark sector of the universe that nevertheless gives an expansion history which does not significantly differ from the one of the standard ΛCDM model. Thanks to a dynamical screening mechanism, in fact, the interaction between the Dark Energy field and the Dark Matter sector is effectively suppressed at the background level during matter domination. As a consequence, background observables cannot discriminate a McDE cosmology from ΛCDM for a wide range of model parameters. On the other hand, linear perturbations are expected to provide tighter bounds due to the existence of attractive and repulsive fifth-forces associated with the dark interactions. In this work, we present the first constraints on the McDE scenario obtained by comparing the predicted evolution of linear density perturbations with a large compilation of recent data sets for the growth rate f σ 8 , including 6dFGS, LRG, BOSS, WiggleZ and VIPERS. Confirming qualitative expectations, growth rate data provide much tighter bounds on the model parameters as compared to the extremely loose bounds that can be obtained when only the background expansion history is considered. In particular, the 95% confidence level on the coupling strength |β| is reduced from |β| ≤ 83 (background constraints only) to |β| ≤ 0.88 (background and linear perturbation constraints). We also investigate how these constraints further improve when using data from future wide-field surveys such as supernova data from LSST and growth rate data from Euclid-type missions. In this case the 95% confidence level on the coupling further reduce to |β| ≤ 0.85. Such constraints are in any case still consistent with a scalar fifth-force of gravitational strength, and we foresee that tighter bounds might be possibly obtained from the investigation of nonlinear structure formation in McDE cosmologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.