BackgroundHypoxia in tumors is associated with resistance towards various therapies including radiotherapy. In this study, we assessed if hypoxia in cancer spheres could be effectively reduced by adding etomoxir (a β-oxidation inhibitor) immediately after cell irradiation.MethodsWe employed cancer cells’ sphere model to target hypoxia. Confocal imaging was used to analyze hypoxia and expression of specific biomarkers in spheres following various treatments (radiation and/or etomoxir).ResultsEtomoxir (32.5 μM) treatment improved the radiation (2.5 Gy) efficacy against growth of lung adenocarcinoma H460 spheres. More importantly, radiation and etomoxir combination significantly reduced the hypoxic regions (pimonidazole+ areas) in H460 spheres compared to either treatment alone. Also, etomoxir and radiation combination treatment reduced the protein level of biomarkers for proliferation (Ki-67 and cyclin D1), stemness (CD44) and β-oxidation (CPT1A) in H460 spheres. We observed similar efficacy of etomoxir against growth of prostate cancer LNCaP cells’ spheres when combined with radiation. Further, radiation treatment strongly reduced the hypoxic regions (pimonidazole+ areas) in CPT1 knockdown LNCaP cells’ spheres.ConclusionsTogether, these results offer a unique approach to target hypoxia in solid tumors via combining etomoxir with radiation, thereby improving therapeutic efficacy.
Basal cell carcinoma (BCC) is the most common skin malignancy. Deregulated hedgehog signaling plays a central role in BCC development; therefore hedgehog inhibitors have been approved to treat locally advanced or metastatic BCC. However, the development of resistance to hedgehog inhibitors is the major challenge in effective treatment of this disease. Herein, we evaluated the efficacy of a natural agent silibinin to overcome resistance with hedgehog inhibitors (Sant-1 and GDC-0449) in BCC cells. Silibinin (25–100 μM) treatment for 48 hrs strongly inhibited growth and induced death in ASZ001, Sant-1 resistant (ASZ001-Sant-1) and GDC-0449 resistant (ASZ001-GDC-0449) BCC cells. Furthermore, colony forming ability of ASZ001, ASZ001-Sant-1 and ASZ001-GDC-0449 cells was completely inhibited by silibinin treatment. Molecular analysis showed that silibinin treatment decreased the level of phosphorylated-EGFR (Tyrosine-1173) and total EGFR in ASZ001-Sant-1 cells; key signaling molecules responsible for BCC resistance towards hedgehog inhibitors. Further, silibinin treatment decreased the phosphorylated-Akt (Serine-473), phosphorylated-ERK1/2 (Threonine 202/Tyrosine 204), cyclin D1 and Gli-1 level but increased the SUFU expression in ASZ001-Sant-1 resistant cells. Silibinin treatment of ASZ001-Sant-1 resistant cells also decreased bcl-2 but increased cleaved caspases 3 and PARP cleavage, suggesting induction of apoptosis. Together, these results support silibinin use to target hedgehog inhibitors resistant BCC cells.
The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause life-threatening diseases in millions of people worldwide, in particular, in patients with cancer, and there is an urgent need for antiviral agents against this infection. While in vitro activities of artemisinins against SARS-CoV-2 and cancer have recently been demonstrated, no study of artemisinin and/or synthetic peroxide-based hybrid compounds active against both cancer and SARS-CoV-2 has been reported yet. However, the hybrid drug's properties (e. g., activity and/or selectivity) can be improved compared to its parent compounds and effective new agents can be obtained by modification/hybridization of existing drugs or bioactive natural products. In this study, a series of new artesunic acid and synthetic peroxide based new hybrids were synthesized and analyzed in vitro for the first time for their inhibitory activity against SARS-CoV-2 and leukemia cell lines. Several artesunic acid-derived hybrids exerted a similar or stronger potency against K562 leukemia cells (81-83 % inhibition values) than the reference drug doxorubicin (78 % inhibition value) and they were also more efficient than their parent compounds artesunic acid (49.2 % inhibition value) and quinoline derivative (5.5 % inhibition value). Interestingly, the same artesunic acidquinoline hybrids also show inhibitory activity against SARS-CoV-2 in vitro (EC 50 13-19 μm) and no cytotoxic effects on Vero E6 cells (CC 50 up to 110 μM). These results provide a valuable basis for design of further artemisinin-derived hybrids to treat both cancer and SARS-CoV-2 infections.
Background To circumvent Warburg effect, several clinical trials for different cancers are utilising a combinatorial approach using metabolic reprogramming and chemotherapeutic agents including metformin. The majority of these metabolic interventions work via indirectly activating AMP-activated protein kinase (AMPK) to alter cellular metabolism in favour of oxidative phosphorylation over aerobic glycolysis. The effect of these drugs is dependent on glycaemic and insulin conditions. Therefore, development of small molecules, which can activate AMPK, irrespective of the energy state, may be a better approach for triple-negative breast cancer (TNBC) treatment. Methods Therapeutic effect of SU212 on TNBC cells was examined using in vitro and in vivo models. Results We developed and characterised the efficacy of novel AMPK activator (SU212) that selectively induces oxidative phosphorylation and decreases glycolysis in TNBC cells, while not affecting these pathways in normal cells. SU212 accomplished this metabolic reprogramming by activating AMPK independent of energy stress and irrespective of the glycaemic/insulin state. This leads to mitotic phase arrest and apoptosis in TNBC cells. In vivo, SU212 inhibits tumour growth, cancer progression and metastasis. Conclusions SU212 directly activates AMPK in TNBC cells, but does not hamper glucose metabolism in normal cells. Our study provides compelling preclinical data for further development of SU212 for the treatment of TNBC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.