BackgroundAntibiotic/ herbicide resistant marker genes have been proven to be very useful in plant transformation for the initial selection of desired transgenic events. However, presence of these genes in the genetically modified crops may render the crop less acceptable to the consumers. Among several different approaches, the effectiveness of Cre/lox mediated recombination strategy for selectable marker gene (SMG) elimination has previously been demonstrated by different groups in several plants including Brassica. In the present study exploiting Cre/lox mediated recombination strategy, attempt has been made for selectable marker gene elimination from Allium sativum leaf agglutinin (ASAL) expressing Brassica plants with hemipteran insect resistant phenotype.ResultsAllium sativum leaf agglutinin (ASAL) linked with lox flanked hygromycin resistant (hpt) gene was introduced in mustard. Cre recombinase gene cassette was also integrated in separate event. A Cre/lox mediated recombination using crossing strategy was adopted to remove the hpt gene from the subsequent generation of selected hybrid events. Reciprocal crosses were made between T1ASAL-lox-hpt-lox and cre-bar plants. Marker gene elimination was confirmed in the resulting F1 hybrid progenies by PCR analysis, using hpt, cre and ASAL specific primers followed by Southern hybridization. In marker free plants, expression of ASAL was also confirmed by western blotting and ELISA analysis. Retention of functionality of expressed ASAL was investigated by agglutination assay using rabbit erythrocytes. Expressed ASAL was also found to be thermo-sensitive. In planta insect bioassay on F1 hybrid progenies exhibited detrimental effect on the performance of devastating target pest, Lipaphis erysimi. The F1 hybrid hpt negative, ASAL positive plants were allowed to self- fertilize to obtain F2 progeny plants. In some of these plants cre gene was found to be segregated out of the ASAL gene by genetic segregation yielding completely marker free plants.ConclusionsThe present study establishes the efficient expression of the newly introduced insect resistant ASAL gene even after Cre/lox mediated recombination resulting in elimination of selectable marker gene.
Brown planthopper, the sap sucking hemipteran pest, is one of the major contributors to the yield loss of rice through the world. To combat the situation researchers are interested identifying genes from plant origin having potentiality to develop hemipteran pest resistance. Interestingly, it was observed that rice plants expressing ASAL, a monocot mannose binding lectin, showed significant resistance to brown planthopper and green leafhopper. Additionally, antibiotic resistant marker gene free ASAL expressing rice lines were developed to overcome the biosafety issues. However, the basis behind the resistance against planthoppers is still not clearly understood. Ligand blot assay was performed with total BBMV protein from BPH and a ~56 kDa receptor protein was detected. LC MS/MS analysis revealed that the receptor protein is NADH quinone oxidoreductase (NQO), a key player in electron transport chain, insect defense response and male/female gametogenesis. Presumably interaction of ASAL with NQO may lead to toxicity and loss of fecundity among BPH feeding on ASAL expressing transgenic rice plants. These findings provide a stable scientific basis for considering these transgenic ASAL expressing rice plants as significant product for combating BPH attack associated yield loss of rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.