An annulus is, informally, a ring-shaped region, often described by two concentric circles. The maximum-width empty annulus problem asks to find an annulus of a certain shape with the maximum possible width that avoids a given set of n points in the plane. This problem can also be interpreted as the problem of finding an optimal location of a ring-shaped obnoxious facility among the input points. In this paper, we study square and rectangular variants of the maximum-width empty anuulus problem, and present first nontrivial algorithms. Specifically, our algorithms run in O(n 3 ) and O(n 2 log n) time for computing a maximum-width empty axis-parallel square and rectangular annulus, respectively. Both algorithms use only O(n) space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.