Recessive Stargardt disease (STGD1) is an inherited retinopathy caused by mutations in the ABCA4 gene. The ABCA4 protein is a phospholipid-retinoid flippase in the outer segments of photoreceptors and the internal membranes of retinal pigment epithelial (RPE) cells. Here, we show that RPE cells derived via induced pluripotent stem-cell from a molecularly and clinically diagnosed STGD1 patient exhibited reduced ABCA4 protein and diminished activity compared to a normal subject. Consequently, STGD1 RPE cells accumulated intracellular autofluorescence-lipofuscin and displayed increased complement C3 activity. The level of C3 inversely correlated with the level of CD46, an early negative regulator of the complement cascade. Persistent complement dysregulation led to deposition of the membrane attack complex on the surface of RPE cells, decrease in transepithelial resistance, and subsequent cell death. These findings are strong evidence of complement-mediated RPE cell damage in STGD1, in the absence of photoreceptors, caused by reduced CD46 regulatory protein.
Transplanting islets serves best option for restoring lost beta cell mass and function. Small bio-chemical agents do have the potential to generate new islets mass, however lack of understanding about mechanistic action of these small molecules eventually restricts their use in cell-based therapies for diabetes. We recently reported “Swertisin” as a novel islet differentiation inducer, generating new beta cells mass more effectively. Henceforth, in the present study we attempted to investigate the molecular signals that Swertisin generate for promoting differentiation of pancreatic progenitors into islet cells. To begin with, both human pancreatic progenitors (PANC-1 cells) and primary cultured mouse intra-islet progenitor cells (mIPC) were used and tested for Swertisin induced islet neogenesis mechanism, by monitoring immunoblot profile of key transcription factors in time dependent manner. We observed Swertisin follow Activin-A mediated MEPK-TKK pathway involving role of p38 MAPK via activating Neurogenin-3 (Ngn-3) and Smad Proteins cascade. This MAP Kinase intervention in differentiation of cells was confirmed using strong pharmacological inhibitor of p38 MAPK (SB203580), which effectively abrogated this process. We further confirmed this mechanism in-vivo in partial pancreatectomised (PPx) mice model, where we could show Swertisin exerted potential increase in insulin transcript levels with persistent down-regulation of progenitor markers like Nestin, Ngn-3 and Pancreatic Duodenal Homeobox Gene-1 (PDX-1) expression, within three days post PPx. With detailed molecular investigations here in, we first time report the molecular mode of action of Swertisin for islet neogenesis mediated through MAP Kinase (MEPK-TKK) pathway involving Ngn-3 and Smad transcriptional regulation. These findings held importance for developing Swertisin as potent pharmacological drug candidate for effective and endogenous differentiation of islets in cell based therapy for diabetes.
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the methyl‐CpG‐binding protein 2 (MeCP2) in the neurons and glial cells of the central nervous system. Currently, therapeutics for RTT is aimed at restoring the loss‐of‐function by MeCP2 gene therapy, but that approach has multiple challenges. We have already reported impaired mitochondrial bioenergetics in MeCP2 deficient astrocytes. Docosahexaenoic acid (DHA), a polyunsaturated fatty acid, has been shown with health benefits, but its impact on mitochondrial functions in MeCP2 deficient astrocytes has never been paid much attention. The present study aimed to investigate the effects of DHA on mitochondrial respiratory chain regulation in MeCP2 knockdown astrocytes. We determined NADH dehydrogenase (ubiquinone) flavoprotein 2 (Ndufv2‐complex‐I), Ubiquinol cytochrome c reductase core protein (Uqcrc1‐complex‐III) genes expression, Ndufv2 protein expression, respiratory electron transport chain complex I, II, III, and IV enzyme activities, intracellular Ca+2, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) in DHA pre‐incubated MeCP2 knock‐down rat primary cortical astrocytes. Our study demonstrates that 100 µM DHA increases MeCP2 gene and protein expression. Increases brain‐derived neurotrophic factor (BDNF) and Uqcrc1 gene expression, Ndufv2 protein expression, but has no effect on glial fibrillary acidic protein (GFAP) gene expression. DHA treatment also increases mitochondrial respiratory Complexes II and III activities and reduces intracellular calcium levels. Taken together, the effects of DHA seem independent of MeCP2 deficiency in astrocytes. Hence, further studies are warranted to understand the complicated mechanisms of DHA and for its therapeutic significance in MeCP2‐mediated mitochondrial dysfunction and in RTT disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.