In this work, we put forward a prescription of achieving spin selective electron transfer by means of light irradiation through a tight-binding (TB) magnetic chain whose site energies are modulated in the form of well known Aubry–Andre–Harper (AAH) model. The interaction of itinerant electrons with local magnetic moments in the magnetic system provides a misalignment between up and down spin channels which leads to a finite spin polarization (SP) upon locating the Fermi energy in a suitable energy zone. Both the energy channels are significantly affected by the irradiation which is directly reflected in degree of spin polarization as well as in its phase. We include the irradiation effect through Floquet ansatz and compute spin polarization coefficient by evaluating transmission probabilities using Green’s function prescription. Our analysis can be utilized to investigate spin dependent transport phenomena in any driven magnetic system with quasiperiodic modulations.
In this work, we perform a numerical study of magnetoresistance in a one-dimensional quantum heterostructure, where the change in electrical resistance is measured between parallel and antiparallel configurations of magnetic layers. This layered structure also incorporates a non-magnetic spacer, subjected to quasi-periodic potentials, which is centrally clamped between two ferromagnetic layers. The efficiency of the magnetoresistance is further tuned by injecting unpolarized light on top of the two sided magnetic layers. Modulating the characteristic properties of different layers, the value of magnetoresistance can be enhanced significantly. The site energies of the spacer is modified through the well-known Aubry–André and Harper (AAH) potential, and the hopping parameter of magnetic layers is renormalized due to light irradiation. We describe the Hamiltonian of the layered structure within a tight-binding (TB) framework and investigate the transport properties through this nanojunction following Green’s function formalism. The Floquet–Bloch (FB) anstaz within the minimal coupling scheme is introduced to incorporate the effect of light irradiation in TB Hamiltonian. Several interesting features of magnetotransport properties are represented considering the interplay between cosine modulated site energies of the central region and the hopping integral of the magnetic regions that are subjected to light irradiation. Finally, the effect of temperature on magnetoresistance is also investigated to make the model more realistic and suitable for device designing. Our analysis is purely a numerical one, and it leads to some fundamental prescriptions of obtaining enhanced magnetoresistance in multilayered systems.
In this work we report for the first time the appearance of non-decaying circular spin current in a magnetic ring with vanishing net magnetization, even in absence of any spin chirality. Breaking the symmetry in hopping integrals we can misalign up and down spin electronic energy levels which yields a net spin current in the magnetic quantum ring, threaded by an Aharonov–Bohm flux. Along with spin current, a net charge current also appears, and we compute both these currents using the second quantized approach. A tight-binding framework is employed to describe the magnetic ring where each site of the ring contains a finite magnetic moment. Itinerant electrons get scattered from the localized magnetic moments at different lattice sites, and the moments are arranged in such a way that the net magnetization vanishes. The interplay between magnetic moments and asymmetric hopping integrals leads to several atypical features in energy spectra, especially the existence of vanishing current carrying energy eigenstates together with the current carrying ones. The formation of such states those do not contribute any current is the artifact of different kinds of on-site energies and/or hopping integrals in different segments of the magnetic ring. The atypical signatures of energy levels are directly reflected into the charge and spin currents, and here we critically investigate the behaviors of circular currents as functions of electron filling, hopping integrals, strength of spin-moment interaction and ring size. Finally, we discuss briefly the possible experimental realization to implement our proposed magnetic system. The present analysis may provide a new route of generating persistent spin current in magnetic quantum rings with vanishing net magnetization, circumventing the use of spin–orbit coupled systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.