Aqueous zinc batteries are attracting interest because of their potential for cost-effective and safe electricity storage. However, metallic zinc exhibits only moderate reversibility in aqueous electrolytes. To circumvent this issue, we study aqueous Zn batteries able to form nanometric interphases at the Zn metal/liquid electrolyte interface, composed of an ion-oligomer complex. In Zn||Zn symmetric cell studies, we report highly reversible cycling at high current densities and capacities (e.g., 160 mA cm−2; 2.6 mAh cm−2). By means of quartz-crystal microbalance, nuclear magnetic resonance, and voltammetry measurements we show that the interphase film exists in a dynamic equilibrium with oligomers dissolved in the electrolyte. The interphase strategy is applied to aqueous Zn||I2 and Zn||MnO2 cells that are charged/discharged for 12,000 cycles and 1000 cycles, respectively, at a current density of 160 mA cm−2 and capacity of approximately 0.85 mAh cm−2. Finally, we demonstrate that Zn||I2-carbon pouch cells (9 cm2 area) cycle stably and deliver a specific energy of 151 Wh/kg (based on the total mass of active materials in the electrode) at a charge current density of 56 mA cm−2.
Reversible electrodeposition of metals at liquid‐solid interfaces is a requirement for long cycle life in rechargeable batteries that utilize metals as anodes. The process has been studied extensively from the perspective of the electrochemical transformations that impact reversibility, however, the fundamental challenges associated with maintaining morphological control when a intrinsically crystalline solid metal phase emerges from an electrolyte solution have been less studied, but provide important opportunities for progress. A crystal growth stabilization method to reshape the initial growth and orientation of crystalline metal electrodeposits is proposed here. The method takes advantage of polymer‐salt complexes (PEG‐Zn2+‐aX−) (a = 1,2,3) formed spontaneously in aqueous electrolytes containing zinc (Zn2+) and halide (X−) ions to regulate electro‐crystallization of Zn. It is shown that when X = Iodine (I), the complexes facilitate electrodeposition of Zn in a hexagonal closest packed morphology with preferential orientation of the (002) plane parallel to the electrode surface. This facilitates exceptional morphological control of Zn electrodeposition at planar substrates and leads to high anode reversibility and unprecedented cycle life. Preliminary studies of the practical benefits of the approach are demonstrated in Zn‐I2 full battery cells, designed in both coin cell and single‐flow battery cell configurations.
At voltages above a certain critical value, V c ≈ 20 kT/e, a space charge layer forms near ion-selective interfaces in liquid electrolytes. Interactions between the space charge and an imposed electric field drives a hydrodynamic instability known as electroconvection. Through particle tracking velocimetry we experimentally study the structure and dynamics of the resultant electroconvective flow. Consistent with previous numerical simulations, we report that, following imposition of a sufficiently large voltage, electroconvection develops gradually as pairs of counter-rotating vortices, which nucleate at the interface between an ion-selective substrate and a liquid electrolyte. Depending on the imposed voltage and cell geometry, the vorticies grow to length scales of hundreds of micrometers. Electroconvective flows are also reported to be structured and multiscale, with the size ratio of the largest to the smallest observable vortices inversely proportional to the Debye screening length.
Polymers are known to adsorb spontaneously from liquid solutions in contact with high-energy substrates to form configurationally complex, but robust phases that often exhibit higher durability than might be expected from the individual physical bonds formed with the substrate. Rational control of the physical, chemical, and transport properties of such interphases has emerged as a fundamental opportunity for scientific and technological advances in energy storage technology but requires in-depth understanding of the conformation states and electrochemical effect of the adsorbed polymers. Here, we analyze the interfacial adsorption of oligomeric polyethylene glycol (PEG) chains of moderate sizes dissolved in protic and aprotic liquid electrolytes and find that there is an optimum polymer molecular weight of approximately 400 Da at which the highest columbic efficiency is achieved for both Zn and Li deposition. These findings point to a simple, versatile approach for extending the lifetime of batteries.
ABSTRACT:The inhibition potential of Azadirachita indica fruit extract on the corrosion of copper immersed in 0.5 N HCl at the room temperature (30°C) was investigated by the help of weight loss method. From the weight loss values, corrosion rates were determined. In the results obtained, the fruit extract, in hydrochloric acid medium, gave its best corrosion inhibition performance at 1.052 g/L extract concentration. The corrosion, kinetic and adsorptive parameters were calculated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.