It is well established fact that peptides from various foods offer human health benefits displaying diverse functionalities. Millets considered as super foods is a major alternative in recent days for traditional diet being rich in proteins and fibre along with trace minerals and vitamins. In this connection, proteins from Buckwheat and Quinoa were digested by in vitro simulation digestion for the generation of peptides, analyzed by nLC-MS/MS and the functional annotations of the identified proteins/peptides were carried out. The study led to the identification of 34 small peptides and their parent proteins clustered into 4 gene functional groups and their localization prediction indicated their involvement in energy metabolism, transport and storage. Interestingly, the identified peptides maximally displayed DPP-IV and ACE inhibitions. The present study was extended to unravel ACE-2 inhibition targeting COVID-19 by selecting ACE-2-Spike binding domain for molecular docking studies. The NWRTVKYG interacted with the ACE-2-Spike interface displaying the feasible binding energy (− 213.63) and docking score (− 12.43) and the MD simulation revealed the ability of the peptide in stabilizing the protein-peptide composite. The present investigation thus establishes newer vista for food derived peptides having ACE-2 inhibitory potential as tentative strategy for SARS-CoV-2 therapeutics.
Bioactive peptide research has experienced considerable therapeutic interest owing to varied physiological functions, efficacy in excretion, and tolerability of peptides. Colostrum is a rich natural source of bioactive peptides with many properties elucidated such as anti-thrombotic, anti-hypertensive, opioid, immunomodulatory, etc. In this study, a variant peptide derived from β-lactoglobulin from buffalo colostrum was evaluated for the anti-ophidian property by targeting snake venom metalloproteinases. These are responsible for rapid local tissue damages that develop after snakebite such as edema, hemorrhage, myonecrosis, and extracellular matrix degradation. The peptide identified by LC-MS/MS effectively neutralized hemorrhagic activity of the Echis carinatus venom in a dose-dependent manner. Histological examinations revealed that the peptide mitigated basement membrane degradation and accumulation of inflammatory leucocytes at the venom-injected site. Inhibition of proteolytic activity was evidenced in both casein and gelatin zymograms. Also, inhibition of fibrinolytic and fibrinogenolytic activities was seen. The UV-visible spectral study implicated Zn chelation, which was further confirmed by molecular docking and dynamic studies by assessing molecular interactions, thus implicating the probable mechanism for inhibition of venom-induced proteolytic and hemorrhagic activities. The present investigation establishes newer vista for the BLG-col peptide with anti-ophidian efficacy as a promising candidate for therapeutic interventions.
Background: Parkinson's disease ranks second, after Alzheimer's as the major neurodegenerative disorder, for which no cure or disease-modifying therapies exist. Ample evidences indicate that PD manifests as a result of impaired anti-oxidative machinery leading to neuronal death wherein Cullin-3 has ascended as a potential therapeutic target for diseases involving damaged anti-oxidative machinery. Objective: The design of target specific inhibitors for the Cullin-3 protein might be a promising strategy to increase the Nrf2 levels and to decrease the possibility of "off-target" toxic properties. Method: In the present study, an integrated computational and wet lab approach was adopted to identify small molecule inhibitors for Cullin-3. The rational drug designing process comprised homology modeling and derivation of the pharmacophore for Cullin-3, virtual screening of Zinc natural compound database, molecular docking and Molecular dynamics based screening of ligand molecules. In vivo validations of an identified lead compound were conducted in the PD model of C. elegans. Result: Our strategy yielded a potential inhibitor; (Glide score = -12.31), which was evaluated for its neuroprotective efficacy in the PD model of C. elegans. The inhibitor was able to efficiently defend against neuronal death in PD model of C.elegans and the neuroprotective effects were attributed to its anti-oxidant activities, supported by the increase in superoxide dismutase, catalase and the diminution of acetylcholinesterase and reactive oxygen species levels. In addition, the Cullin-3 inhibitor significantly restored the behavioral deficits in the transgenic C. elegans. Conclusion: Taken together, these findings highlight the potential utility of Cullin-3 inhibition to block the persistent neuronal death in PD. Further studies focusing on Cullin-3 and its mechanism of action would be interesting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.