The end‐notched flexure (ENF) test is widely used for measuring the Mode II critical strain energy release rate of adhesively bonded joints (ABJs). Unstable crack growth in ENF joints with brittle adhesives is a common phenomenon. Classic data reduction methods like the direct beam theory (DBT) and the compliance‐based beam method (CBBM) usually result in unacceptable scatter when crack grows unstable. In this study, the application of a compliance calibration method (CCM) for ENF adhesive joints with a brittle adhesive is experimentally investigated. For this purpose, ENF specimens were manufactured and tested. Different data reduction methods were considered for treating the results. Afterwards, the obtained fracture energies were used as an input parameter in a finite element (FE) analysis with a cohesive zone model to evaluate the validity of the experimental data. It is shown that the fracture loads obtained by the CCM have the best agreement with the experimental ones comparing with the other data reduction approaches. To study the effect of geometry on the CCM results, ENF specimens with different adhesive thicknesses, substrate thicknesses and span lengths were also considered in this study, and some general conclusions are made about the geometrical parameters effect on the Mode II fracture energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.