Control over the frequency and pattern of neuronal spike discharge depends on Ca2+-gated K+ channels that reduce cell excitability by hyperpolarizing the membrane potential. The Ca2+-dependent slow afterhyperpolarization (sAHP) is one of the most prominent inhibitory responses in the brain, with sAHP amplitude linked to a host of circuit and behavioral functions, yet the channel that underlies the sAHP has defied identification for decades. Here, we show that intermediate-conductance Ca2+-dependent K+ (IKCa) channels underlie the sAHP generated by trains of synaptic input or postsynaptic stimuli in CA1 hippocampal pyramidal cells. These findings are significant in providing a molecular identity for the sAHP of central neurons that will identify pharmacological tools capable of potentially modifying the several behavioral or disease states associated with the sAHP.
Our previous work reported that KCa3.1 (IKCa) channels are expressed in CA1 hippocampal pyramidal cells and contribute to the slow afterhyperpolarization that regulates spike accommodation in these cells. The current report presents data from single cell RT-PCR that further reveals mRNA in CA1 cells that corresponds to the sequence of an IKCa channel from transmembrane segments 5 through 6 including the pore region, revealing the established binding sites for 4 different IKCa channel blockers. A comparison of methods to internally apply the IKCa channel blocker TRAM-34 shows that including the drug in an electrode from the onset of an experiment is unviable given the speed of drug action upon gaining access for whole-cell recordings. Together the data firmly establish IKCa channel expression in CA1 neurons and clarify methodological requirements to obtain a block of IKCa channel activity through internal application of TRAM-34.
The cerebellum receives sensory information by mossy fiber input from a multitude of sources that require differential signal processing. A compartmentalization of function begins with the segregation of mossy fibers across 10 distinct lobules over the rostrocaudal axis, with tactile receptor afferents prevalent in anterior lobules and vestibular input in caudal lobules. However, it is unclear how these unique signals might be differentially processed at the circuit level across the cerebellum. As granule cells receive mossy fiber input, they represent a key stage at which postsynaptic mechanisms could influence signal processing. Granule cells express an A-type current mediated by Kv4 potassium channels that modify the latency and frequency of spike output. The current study examined the potential for a Cav3 calcium-Kv4 channel complex to regulate the response of granule cells to mossy fiber input in lobules 2 and 9 of the rat cerebellum. Similar A-type currents were recorded in both regions, but the Cav3 calcium current was expressed at a substantially higher density in lobule 9 cells, acting to increase A-type current availability through its influence on Kv4 voltage for inactivation. The difference in excitability imparted by Cav3-Kv4 interactions proves to allow lobule 2 granule cells to respond more effectively to tactile stimulus-like burst input and lobule 9 cells to slow shifts in input frequency characteristic of vestibular input. The expression pattern of Cav3 channels and its control of Kv4 availability thus provides a novel means of processing widely different forms of sensory input across cerebellar lobules.
Mossy fiber afferents to cerebellar granule cells form the primary synaptic relay into cerebellum, providing an ideal site to process signal inputs differentially. Mossy fiber input is known to exhibit a long-term potentiation (LTP) of synaptic efficacy through a combination of presynaptic and postsynaptic mechanisms. However, the specific postsynaptic mechanisms contributing to LTP of mossy fiber input is unknown. The current study tested the hypothesis that LTP induces a change in intrinsic membrane excitability of rat cerebellar granule cells through modification of Kv4 A-type potassium channels. We found that theta-burst stimulation of mossy fiber input in lobule 9 granule cells lowered the current threshold to spike and increases the gain of spike firing by 2-to 3-fold. The change in postsynaptic excitability was traced to hyperpolarizing shifts in both the half-inactivation and half-activation potentials of Kv4 that occurred upon coactivating NMDAR and group I metabotropic glutamatergic receptors. The effects of theta-burst stimulation on Kv4 channel control of the gain of spike firing depended on a signaling cascade leading to extracellular signal-related kinase activation. Under physiological conditions, LTP of synaptically evoked spike output was expressed preferentially for short bursts characteristic of sensory input, helping to shape signal processing at the mossy fiber-granule cell relay.
Calmodulin (CaM) is an important signaling molecule that regulates a vast array of cellular functions by activating second messengers involved in cell function and plasticity. Low voltage-activated calcium channels of the Cav3 family have the important role of mediating low threshold calcium influx, but were not believed to interact with CaM. We find a constitutive association between CaM and the Cav3.1 channel at rest that is lost through an activity-dependent and Cav3.1 calcium-dependent CaM dissociation. Moreover, Cav3 calcium influx is sufficient to activate αCaMKII in the cytoplasm in a manner that depends on an intact Cav3.1 C-terminus needed to support the CaM interaction. Our findings thus establish that T-type channel calcium influx invokes a novel dynamic interaction between CaM and Cav3.1 channels to trigger a signaling cascade that leads to αCaMKII activation.Electronic supplementary materialThe online version of this article (doi:10.1186/s13041-017-0317-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.