One of the most surprising predictions of modern quantum theory is that the vacuum of space is not empty. In fact, quantum theory predicts that it teems with virtual particles flitting in and out of existence. Although initially a curiosity, it was quickly realized that these vacuum fluctuations had measurable consequences--for instance, producing the Lamb shift of atomic spectra and modifying the magnetic moment of the electron. This type of renormalization due to vacuum fluctuations is now central to our understanding of nature. However, these effects provide indirect evidence for the existence of vacuum fluctuations. From early on, it was discussed whether it might be possible to more directly observe the virtual particles that compose the quantum vacuum. Forty years ago, it was suggested that a mirror undergoing relativistic motion could convert virtual photons into directly observable real photons. The phenomenon, later termed the dynamical Casimir effect, has not been demonstrated previously. Here we observe the dynamical Casimir effect in a superconducting circuit consisting of a coplanar transmission line with a tunable electrical length. The rate of change of the electrical length can be made very fast (a substantial fraction of the speed of light) by modulating the inductance of a superconducting quantum interference device at high frequencies (>10 gigahertz). In addition to observing the creation of real photons, we detect two-mode squeezing in the emitted radiation, which is a signature of the quantum character of the generation process.
Quantum fluctuations of the vacuum are both a surprising and fundamental
phenomenon of nature. Understood as virtual photons flitting in and out of
existence, they still have a very real impact, \emph{e.g.}, in the Casimir
effects and the lifetimes of atoms. Engineering vacuum fluctuations is
therefore becoming increasingly important to emerging technologies. Here, we
shape vacuum fluctuations using a "mirror", creating regions in space where
they are suppressed. As we then effectively move an artificial atom in and out
of these regions, measuring the atomic lifetime tells us the strength of the
fluctuations. The weakest fluctuation strength we observe is 0.02 quanta, a
factor of 50 below what would be expected without the mirror, demonstrating
that we can hide the atom from the vacuum
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.