Tunable interparticle interactions in colloidal suspensions are of great interest because of their fundamental and practical significance. In this paper we present a new experimental setup for self-assembly of colloidal particles in two-dimensional systems, where the interactions are controlled by external rotating electric fields. The maximal magnitude of the field in a suspension is 25 V/mm, the field homogeneity is better than 1% over the horizontal distance of 250 μm, and the rotation frequency is in the range of 40 Hz to 30 kHz. Based on numerical electrostatic calculations for the developed setup with eight planar electrodes, we found optimal experimental conditions and performed demonstration experiments with a suspension of 2.12 μm silica particles in water. Thanks to its technological flexibility, the setup is well suited for particle-resolved studies of fundamental generic phenomena occurring in classical liquids and solids, and therefore it should be of interest for a broad community of soft matter, photonics, and material science.
A sapphire shaped capillary needle designed for collimating and focusing of laser radiation was proposed and fabricated by the edge-defined film-fed growth technique. It features an as-grown surface quality, high transparency for visible and near-infrared radiation, high thermal and chemical resistance and the complex shape of the tip, which protects silica fibers. The needle's geometrical parameters can be adjusted for use in various situations, such as type of tissue, modality of therapy and treatment protocol. The focusing effect was demonstrated numerically and observed experimentally during coagulation of the ex vivo porcine liver samples. This needle in combination with 0.22NA optical fiber allows intensive and uniform coagulation of 150 mm 3 volume interstitially and 30 mm 3 superficially by laser exposure with 280 J without tissue carbonization and fiber damaging along with delicate treatment of small areas. The demonstrated results reveal the perspectives of the proposed sapphire microfocusing needle for laser surgery and therapy.
Sapphire capillary needles fabricated by edge-defined film-fed growth (EFG) technique hold strong potential in laser thermotherapy and photodynamic therapy, thanks to the advanced physical properties of sapphire. These needles feature an as-grown optical quality, their length is tens of centimeters, and they contain internal capillary channels, with open or closed ends. They can serve as optically transparent bearing elements with optical fibers introduced into their capillary channels in order to deliver laser radiation to biological tissues for therapeutic and, in some cases, diagnostic purposes. A potential advantage of the EFG-grown sapphire needles is associated with an ability to form the tip of a needle with complex geometry, either as-grown or mechanically treated, aimed at controlling the output radiation pattern. In order to examine a potential of the radiation pattern shaping, we present a set of fabricated sapphire needles with different tips. We studied the radiation patterns formed at the output of these needles using a He-Ne laser as a light source, and used intralipid-based tissue phantoms to proof the concept experimentally and the Monte-Carlo modeling to proof it numerically. The observed results demonstrate a good agreement between the numerical and experimental data and reveal an ability to control within wide limits the direction of tissue exposure to light and the amount of exposed tissue by managing the sapphire needle tip geometry.
More than one order enhancement of third-harmonic generation is observed experimentally at band-gap pumping of globular photonic crystals. Due to a lateral modulation of the dielectric permittivity in two-and three-dimensional photonic crystals, sharp peaks of light intensity (light localization) arise in the media at the band-gap pumping. The light localization enhances significantly the nonlinear light conversion, in particular, third-harmonic generation, in the near-surface volume of photonic crystal. The observed way to enhance the nonlinear conversion can be useful for creation of novel compact elements of nonlinear and laser optics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.