Transient electronic and vibrational absorption spectroscopies have been used to investigate whether UV-induced electron-driven proton transfer (EDPT) mechanisms are active in a chemically modified adenine-thymine (A·T) DNA base pair. To enhance the fraction of biologically relevant Watson-Crick (WC) hydrogen-bonding motifs and eliminate undesired Hoogsteen structures, a chemically modified derivative of A was synthesized, 8-(tert-butyl)-9-ethyladenine (8tBA). Equimolar solutions of 8tBA and silyl-protected T nucleosides in chloroform yield a mixture of WC pairs, reverse WC pairs, and residual monomers. Unlike previous transient absorption studies of WC guanine-cytosine (G·C) pairs, no clear spectroscopic or kinetic evidence was identified for the participation of EDPT in the excited-state relaxation dynamics of 8tBA·T pairs, although ultrafast (sub-100 fs) EDPT cannot be discounted. Monomer-like dynamics are proposed to dominate in 8tBA·T.
The magnetic cannon is a simple device that converts magnetic energy into kinetic energy: when a steel ball with low initial velocity impacts a chain made of a magnet followed by a few other steel balls, the last ball of the chain is ejected at a much larger velocity. The analysis of this spectacular device involves understanding of advanced magnetostatics, energy conversion and collision of solids. In this article, the phenomena at each step of the process are modeled to predict the final kinetic energy of the ejected ball as a function of a few parameters which can all be experimentally measured.
While doping is crucial for numerous technological applications, its control remains difficult especially when the material is reduced down to the nanometric scale. We suggest a new way to dope nanoparticles using laser ablation in liquids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.