A well-posed thermal-electric coupled mathematical-numerical model to optimize the cross-sectional area per length of a thermoelectric (TE) leg is introduced to maximize thermal conversion efficiency (η) or power output (P o ). To employ such optimization, the por n-type leg was divided into uniform length segments, wherein the product of the electrical resistance (R el ) and thermal conductance (K) was minimized as to maximize the figure of merit (ZT ) of each individual partition. The minimization of R el K was dependent upon the temperature difference established across each segment, which was resolved using a one-dimensional finite difference (FD) scheme of the TE general energy equation (GEQ). The TE GEQ included all pertinent phenomena -conduction, Joule, Peltier and Thomson effects -as well as temperature dependent properties. The boundary conditions of the FD scheme were provided via a one-dimensional thermal resistance network. The current output of the unicouple was determined by the temperature bounds across the junction and the internal resistance of the TE legs, and this was explicitly coupled to the TE GEQ to create a fullycoupled model. The proposed model was validated to a fully-coupled thermal-electric finite volume method model implemented in ANSYS CFX. The proposed optimization process yielded improvements in volumetric efficiency and volumetric power output of 4.60% and 3.75%, respectively, in comparison to conventional constant-area optimization processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.