Clavulanic acid is a bacterial specialized metabolite, which inhibits certain serine β-lactamases, enzymes that inactivate β-lactam antibiotics to confer resistance. Due to this activity, clavulanic acid is widely used in combination with penicillin and cephalosporin (β-lactam) antibiotics to treat infections caused by β-lactamase-producing bacteria. Clavulanic acid is industrially produced by fermenting Streptomyces clavuligerus, as large-scale chemical synthesis is not commercially feasible. Other than S. clavuligerus, Streptomyces jumonjinensis and Streptomyces katsurahamanus also produce clavulanic acid along with cephamycin C, but information regarding their genome sequences is not available. In addition, the Streptomyces contain many biosynthetic gene clusters thought to be “cryptic,” as the specialized metabolites produced by them are not known. Therefore, we sequenced the genomes of S. jumonjinensis and S. katsurahamanus, and examined their metabolomes using untargeted mass spectrometry along with S. clavuligerus for comparison. We analyzed the biosynthetic gene cluster content of the three species to correlate their biosynthetic capacities, by matching them with the specialized metabolites detected in the current study. It was recently reported that S. clavuligerus can produce the plant-associated metabolite naringenin, and we describe more examples of such specialized metabolites in extracts from the three Streptomyces species. Detailed comparisons of the biosynthetic gene clusters involved in clavulanic acid (and cephamycin C) production were also performed, and based on our analyses, we propose the core set of genes responsible for producing this medicinally important metabolite.
Bacterial specialized metabolites are of immense importance because of their medicinal, industrial, and agricultural applications. Streptomyces clavuligerus is a known producer of such compounds; however, much of its metabolic potential remains unknown, as many associated biosynthetic gene clusters are silent or expressed at low levels. The overexpression of ribosome recycling factor (frr) and ribosome engineering (induced rpsL mutations) in other Streptomyces spp. has been reported to increase the production of known specialized metabolites. Therefore, we used an overexpression strategy in combination with untargeted metabolomics, molecular networking, and in silico analysis to annotate 28 metabolites in the current study, which have not been reported previously in S. clavuligerus. Many of the newly described metabolites are commonly found in plants, further alluding to the ability of S. clavuligerus to produce such compounds under specific conditions. In addition, the manipulation of frr and rpsL led to different metabolite production profiles in most cases. Known and putative gene clusters associated with the production of the observed compounds are also discussed. This work suggests that the combination of traditional strain engineering and recently developed metabolomics technologies together can provide rapid and cost-effective strategies to further speed up the discovery of novel natural products.
While persistent efforts are being made to develop a novel arsenal against bacterial pathogens, the development of such materials remains a formidable challenge. One such strategy is to develop a multimodel antibacterial agent which will synergistically combat bacterial pathogens, including multidrug-resistant bacteria. Herein, we used pediocin, a class IIa bacteriocin, to decorate Ag° and developed a double-edged nanoplatform (Pd-SNPs) that inherits intrinsic properties of both antibacterial moieties, which engenders strikingly high antibacterial potency against a broad spectrum of bacterial pathogens including the ESKAPE category without displaying adverse cytotoxicity. The enhanced antimicrobial activity of Pd-SNPs is due to their higher affinity with the bacterial cell wall, which allows Pd-SNPs to penetrate the outer membrane, inducing membrane depolarization and the disruption of membrane integrity. Bioreporter assays revealed the upregulation of cpxP, degP, and sosX genes, triggering the burst of reactive oxygen species which eventually cause bacterial cell death. Pd-SNPs prevented biofilm formation, eradicated established biofilms, and inhibited persister cells. Pd-SNPs display unprecedented advantages because they are heat-resistant, retain antibacterial activity in human serum, and alleviate vancomycin intermediate Staphylococcus aureus (VISA) infection in the mouse model. In addition, Pd-SNPs wrapped in biodegradable nanofibers mitigated Listeria monocytogenes in cheese samples. Collectively, Pd-SNPs exhibited excellent biocompatibility and in vivo therapeutic potency without allowing foreseeable resistance acquisition by pathogens. These findings underscore new avenues for using a potent biocompatible nanobiotic platform to combat a wide range of bacterial pathogens.
Specialized metabolites produced by microorganisms found in ocean sediments display a wide range of clinically relevant bioactivities, including antimicrobial, anticancer, antiviral, and anti-inflammatory. Due to limitations in our ability to culture many benthic microorganisms under laboratory conditions, their potential to produce bioactive compounds remains underexplored. However, the advent of modern mass spectrometry technologies and data analysis methods for chemical structure prediction has aided in the discovery of such metabolites from complex mixtures. In the present study, ocean sediments were collected from Baffin Bay (Canadian Arctic) and the Gulf of Maine for untargeted metabolomics using mass spectrometry. A direct examination of prepared organic extracts identified 1468 spectra, of which ~45% could be annotated using in silico analysis methods. A comparable number of spectral features were detected in sediments collected from both locations, but 16S rRNA gene sequencing revealed a significantly more diverse bacterial community in samples from Baffin Bay. Based on spectral abundance, 12 specialized metabolites known to be associated with bacteria were selected for discussion. The application of metabolomics directly on marine sediments provides an avenue for culture-independent detection of metabolites produced under natural settings. The strategy can help prioritize samples for novel bioactive metabolite discovery using traditional workflows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.