Aims This study aimed to unveil perrhenate sorption properties of the filamentous sheaths formed by Sphaerotilus montanus, Sphaerotilus natans and Thiothrix fructosivorans. Methods and Results The adsorptions of perrhenate on lyophilizates of the above‐mentioned filamentous sheaths were analysed by ICP, IR, XPS and EDX. The capacity reached 82 mg per g‐adsorbent, when using S. natans. The Langmuir coefficient of this adsorbent was found to be the largest of the three. The adsorption capacity was discussed with respect to the amount of nitrogen and phosphorus in the adsorbents. The occurrence of anion exchange was implied by the IR spectrum changes before and after adsorption. The adsorption data fitted well with a pseudo‐second‐order equation, suggesting that the rate is determined by the chemical bond formation. Conclusions A significant amount of perrhenate was adsorbed on the sheaths formed by S. montanus, S. natans and T. fructosivorans. The adsorption was correlated with the elemental compositions. A strong chemical bond formation was suggested from the results of the Langmuir adsorption isotherm and kinetic analysis. Significance and Impact of Study The capacity obtained for S. natans is one of the largest adsorptions amongst the similar biomaterials, implying the possibility of providing economical adsorbents of rare metal oxyanions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.