We show that Co2FeAl0.5Si0.5 film deposited on Si(111) has a single crystal structure and twin related epitaxial relationship with the substrate. Sub-nanometer electron energy loss spectroscopy shows that in a narrow interface region there is a mutual inter-diffusion dominated by Si and Co. Atomic resolution aberration-corrected scanning transmission electron microscopy reveals that the film has B2 ordering. The film lattice structure is unaltered even at the interface due to the substitutional nature of the intermixing. First-principles calculations performed using structural models based on the aberration corrected electron microscopy show that the increased Si incorporation in the film leads to a gradual decrease of the magnetic moment as well as significant spin-polarization reduction. These effects can have significant detrimental role on the spin injection from the Co2FeAl0.5Si0.5 film into the Si substrate, besides the structural integrity of this junction.
Halfmetal-semiconductor interfaces are crucial for hybrid spintronic devices. Atomically sharp interfaces with high spin polarisation are required for efficient spin injection. In this work we show that thin film of half-metallic full Heusler alloy Co2FeSi0.5Al0.5 with uniform thickness and B2 ordering can form structurally abrupt interface with Ge(111). Atomic resolution energy dispersive X-ray spectroscopy reveals that there is a small outdiffusion of Ge into specific atomic planes of the Co2FeSi0.5Al0.5 film, limited to a very narrow 1 nm interface region. First-principles calculations show that this selective outdiffusion along the Fe-Si/Al atomic planes does not change the magnetic moment of the film up to the very interface. Polarized neutron reflectivity, x-ray reflectivity and aberration-corrected electron microscopy confirm that this interface is both magnetically and structurally abrupt. Finally, using first-principles calculations we show that this experimentally realised interface structure, terminated by Co-Ge bonds, preserves the high spin polarization at the Co2FeSi0.5Al0.5/Ge interface, hence can be used as a model to study spin injection from half-metals into semiconductors.
We show a direct evidence for the impact of Heusler/semiconductor interfaces atomic structure on the spin transport signals in semiconductor-based lateral spin-valve (LSV) devices. Based on atomic scale Z contrast scanning transmission electron microscopy and energy dispersive x-ray spectroscopy we show that atomic order/disorder of Co2FeAl0.5Si0.5 (CFAS)/n-Ge LSV devices is critical for the spin injection in Ge. By conducting a post annealing of the LSV devices, we find 90% decrease in the spin signal while there is no difference in the electrical properties of the CFAS/n-Ge contacts and in the spin diffusion length of the n-Ge layer. We show that the reduction in the spin signals after annealing is attributed to the presence of intermixing phases at the Heusler/semiconductor interface. First principles calculations show how that intermixed interface region has drastically reduced spin polarisation at the Fermi level, which is the main cause for the significant decrease of the spin signal in the annealed devices above 300 • C.
We present a nanoscale structural and density functional study of the Mn doped 3D topological insulator Bi2Te3. X-ray absorption near edge structure shows that Mn has valency of nominally 2+. Extended x-ray absorption fine structure spectroscopy in combination with electron energy loss spectroscopy (EELS) shows that Mn is a substitutional dopant of Bi and Te and also resides in the van der Waals gap between the quintuple layers of Bi2Te3. Combination of aberration-corrected scanning transmission electron microscopy and EELS shows that Mn substitution of Te occurs in film regions with increased Mn concentration. First-principles calculations show that the Mn dopants favor octahedral sites and are ferromagnetically coupled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.