Anisotropic diffusion filtering for signal smoothing as a low-pass filter has the advantage of the edge-preserving, i.e., it does not affect the edges that contain more critical data than the other parts of the signal. In this paper, we present a numerical algorithm based on least squares support vector regression by using Legendre orthogonal kernel with the discretization of the nonlinear diffusion problem in time by the Crank-Nicolson method. This method transforms the signal smoothing process into solving an optimization problem that can be solved by efficient numerical algorithms. In the final analysis, we have reported some numerical experiments to show the effectiveness of the proposed machine learning based approach for signal smoothing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.