Articular cartilage (AC) is a highly organized connective tissue lining, covering the ends of bones within articulating joints. Its highly ordered structure is essential for stable motion and provides a frictionless surface easing load transfer. AC is vulnerable to lesions and, because it is aneural and avascular, it has limited self-repair potential which often leads to osteoarthritis. To date, no fully successful treatment for osteoarthritis has been reported. Thus, the development of innovative therapeutic approaches is desperately needed. Autologous chondrocyte implantation, the only cell-based surgical intervention approved in the United States for treating cartilage defects, has limitations because of de-differentiation of articular chondrocytes (AChs) upon in vitro expansion. De-differentiation can be abated if initial populations of AChs are co-cultured with mesenchymal stem cells (MSCs), which not only undergo chondrogenesis themselves but also support chondrocyte vitality. In this review we summarize studies utilizing AChs, non-AChs, and MSCs and compare associated outcomes. Moreover, a comprehensive set of recent human studies using chondrocytes to direct MSC differentiation, MSCs to support chondrocyte re-differentiation and proliferation in co-culture environments, and exploratory animal intra- and inter-species studies are systematically reviewed and discussed in an innovative manner allowing side-by-side comparisons of protocols and outcomes. Finally, a comprehensive set of recommendations are made for future studies.
Articular cartilage (AC), tissue with the lowest volumetric cellular density, is not supplied with blood and nerve resulting in limited ability for self-repair upon injury. Because there is no treatment capable of fully restoring damaged AC, tissue engineering is being investigated. The emphasis of this field is to engineer functional tissues in vitro in bioreactors capable of mimicking in vivo environments required for appropriate cellular growth and differentiation. In a step towards engineering AC, human adipose-derived stem cells were differentiated in a unique centrifugal bioreactor under oscillating hydrostatic pressure (OHP) and supply of transforming growth factor beta 3 (TGF-β3) that mimic in vivo environments. Static micromass and pellet cultures were used as controls. Since withstanding and absorbing loads are among the main functions of an AC, mechanical properties of the engineered AC tissues were assayed using atomic force microscopy (AFM) under a controlled indentation depth of 100 nm. Young's moduli of elasticity were quantified by modeling AFM force-indentation data using the Hertz model of contact mechanics. We found exposure to OHP causes cartilage constructs to have 45-fold higher Young's moduli compared to static cultures. Addition of TGF-β3 further increases Young's moduli in bioreactor samples by 1.9-fold bringing it within 70.6% of the values estimated for native cartilage. Our results imply that OHP and TGF-β3 act synergistically to improve the mechanics of engineered tissues.
The influence of combined shear stress and oscillating hydrostatic pressure (OHP), two forms of physical forces experienced by articular cartilage (AC) in vivo, on chondrogenesis, is investigated in a unique bioreactor system. Our system introduces a single reaction chamber design that does not require transfer of constructs after seeding to a second chamber for applying the mechanical forces, and, as such, biochemical and mechanical stimuli can be applied in combination. The biochemical and mechanical properties of bovine articular chondrocytes encapsulated in agarose scaffolds cultured in our bioreactors for 21 days are compared to cells statically cultured in agarose scaffolds in addition to static micromass and pellet cultures. Our findings indicate that glycosaminoglycan and collagen secretions were enhanced by at least 1.6-fold with scaffold encapsulation, 5.9-fold when adding 0.02 Pa of shear stress and 7.6-fold with simultaneous addition of 4 MPa of OHP when compared to micromass samples. Furthermore, shear stress and OHP have chondroprotective effects as evidenced by lower mRNA expression of β1 integrin and collagen X to non-detectable levels and an absence of collagen I upregulation as observed in micromass controls. These collective results are further supported by better mechanical properties as indicated by 1.6–19.8-fold increases in elastic moduli measured by atomic force microscopy.
The expression of β1-integrin on human adipose-derived stem cells, differentiating toward a chondrogenic lineage, is hypothesized to decrease when cells are grown under in vivo-like environments due to sufficient extracellular matrix (ECM) buildup in the engineered tissues. The opposite is true when cells are grown in static cultures such as in pellet or micromass. To probe β1-integrin distribution on cellular surfaces, atomic force microscopy cantilevers modified with anti-β1-integrin antibodies were used. Specific antibody-antigen adhesion forces were identified and indicated the locations of β1-integrins on cells. ECM properties were assessed by estimating the Young's modulus of the matrix. Specific single antibody-antigen interactions averaged 78 ± 10 pN with multiple bindings occurring at approximate multiples of 78 pN. The author's results show that upregulated β1-integrin expression coincided with a less robust ECM as assessed by mechanical properties of tissues. In micromass and pellet cultures, transforming growth factor β3(TGF-β3) elicited a decrease in Young's modulus by 3.7- and 4.4-fold while eliciting an increase in β1-integrin count by 1.1- and 1.3-fold, respectively. β1-integrin counts on cells grown in the presence of TGF-β3 with oscillating hydrostatic pressure decreased by a 1.1-fold while the Young's modulus increased by a 1.9-fold. Collectively, our results suggest that cells in insufficiently robust ECM express more integrin perhaps to facilitate cell-ECM adhesion and compensate for a looser less robust ECM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.