We consider the double copy of massive Yang-Mills theory in four dimensions, whose decoupling limit is a nonlinear sigma model. The latter may be regarded as the leading terms in the low energy effective theory of a heavy Higgs model, in which the Higgs has been integrated out. The obtained double copy effective field theory contains a massive spin-2, massive spin-1 and a massive spin-0 field, and we construct explicitly its interacting Lagrangian up to fourth order in fields. We find that up to this order, the spin-2 self interactions match those of the dRGT massive gravity theory, and that all the interactions are consistent with a Λ3 = (m2MPl)1/3 cutoff. We construct explicitly the Λ3 decoupling limit of this theory and show that it is equivalent to a bi-Galileon extension of the standard Λ3 massive gravity decoupling limit theory. Although it is known that the double copy of a nonlinear sigma model is a special Galileon, the decoupling limit of massive Yang-Mills theory is a more general Galileon theory. This demonstrates that the decoupling limit and double copy procedures do not commute and we clarify why this is the case in terms of the scaling of their kinematic factors.
We explore the effective field theory for single and multiple interacting pseudo-linear spin-
We consider the effective field theory of multiple interacting massive spin-2 fields. We focus on the case where the interactions are chosen so that the cutoff is the highest possible, and highlight two distinct classes of theories. In the first class, the mass eigenstates only interact through potential operators that carry no derivatives in unitary gauge at leading order. In the second class, a specific kinetic mixing between the mass eigenstates is included non-linearly. Performing a decoupling and ADM analysis, we point out the existence of a ghost present at a low scale for the first class of interactions. For the second class of interactions where kinetic mixing is included, we derive the full Λ 3decoupling limit and confirm the absence of any ghosts. Nevertheless both formulations can be used to consistently describe an EFT of interacting massive spin-2 fields which, for a suitable technically natural tuning of the EFT, have the same strong coupling scale Λ 3. We identify the generic form of EFT corrections in each case. By using Galileon Duality transformations for the specific case of two massive spin-2 fields with suitable couplings, the decoupling limit theory is shown to be a bi-Galileon.
We explore the effective field theory for single and multiple interacting pseudolinear spin-2 fields. By applying forward limit positivity bounds, we show that among the parameters contributing to elastic tree level scattering amplitude, there is no region of compatibility of the leading interactions with a standard local UV completion. Our result generalizes to any number of interacting pseudo-linear spin-2 fields. These results have significant implications for the organization of the effective field theory expansion for pseudo-linear fields.
Recent explorations on how to construct a double copy of massive gauge fields have shown that, while any amplitude can be written in a form consistent with colour-kinematics duality, the double copy is generically unphysical. In this paper, we explore a new direction in which we can obtain a sensible double copy of massive gauge fields due to the special kinematics in three-dimensional spacetimes. To avoid the appearance of spurious poles at 5-points, we only require that the scattering amplitudes satisfy one BCJ relation. We show that the amplitudes of Topologically Massive Yang-Mills satisfy this relation and that their double copy at three, four, and five-points is Topologically Massive Gravity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.