Metamaterials have revolutionized the research in conventional electromagnetics. They display unique properties which can be used for the manipulation of electromagnetic waves in unexpected ways. In this research, a diamond nano-antenna is designed and optimized using the CST Microwave Studio, which uses Finite Difference Time Domain (FDTD) method. The designed unit cell shows high polarization conversion rates (PCR) for ultraviolet (UV) frequencies (especially the UV-B band) whilst covering Panchatram-Berry (PB) phase. The unit cell is then used to design metasurfaces that generate light beams carrying Orbital Angular Momentum (OAM) of different orders. Through the design of two dimensional metamaterial surfaces, the behavior of electromagnetic beams can be changed on subwavelength scale. This has led to a number of applications related to nanotechnology. A vortex beam carries Orbital Angular Momentum (OAM) which has played a vital role in increasing the bandwidth and data rate of optical communication systems. Therefore, OAM beams having different topological charges have been generated at 294 nm to propose an improvement in Free Space Optical (FSO) communication. Optical links also function as a suitable substitute for applications where Radio Frequency (RF) communications may not be effective. The proposed theoretical model is expected to open new horizons in optical communication by incorporating the use of nanoscale devices with high efficiencies in the ultraviolet regime.
This paper proposes an optical sensor based on nanoscale metamaterial structures. The design of the sensor has been explored with respect to biosensing applications through numerical modeling and analysis. The sensor comprises silica substrate and diamond nanostructures, both of which represent dielectrics. The sensing principle is based on the detection of ambient refractive index change. As the analyte properties change, the refractive index changes, as well. The refractive index change has been detected by striking electromagnetic waves onto the structure and noting the spectral response. Ultraviolet waves have been utilized for recording spectral responses and evaluating sensor performance. The sensor displays multiple sharp resonance peaks in the reflected beam. By altering the refractive index of the analyte present around the sensor, the peaks can be seen choosing different wavelengths. The resonance peaks have been investigated to observe electric and magnetic field dipoles in the sensor structure. The spectrum peaks have also been studied to understand fabrication tolerances. The sensor displays a linear response, along with a large Quality (Q) factor. The maximum value of the achieved Quality (Q) factor for the proposed sensor is 1229 while operating across the refractive index range of 1.4–1.45. The claim has been supported by comparison with contemporary works on similar platforms. A range of other sensing parameters have also been calculated and benchmarked. Metamaterial-based optical sensors can provide smaller device sizes, faster response times and label-free detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.