We subject a series of five protein–ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and adenosine ribose phosphatase, to long time scale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twelve 10 μs simulations for each system, we accurately and reproducibly determine ligand binding sites, both crystallographically resolved and otherwise, thereby discovering binding sites that can be exploited for drug discovery. We also report robust, ensemble-based observation of conformational changes that occur at the main binding site of 3CLPro due to the presence of another ligand at an allosteric binding site explaining the underlying cascade of events responsible for its inhibitory effect. Using our simulations, we have discovered a novel allosteric mechanism of inhibition for a ligand known to bind only at the substrate binding site. Due to the chaotic nature of molecular dynamics trajectories, regardless of their temporal duration individual trajectories do not allow for accurate or reproducible elucidation of macroscopic expectation values. Unprecedentedly at this time scale, we compare the statistical distribution of protein–ligand contact frequencies for these ten/twelve 10 μs trajectories and find that over 90% of trajectories have significantly different contact frequency distributions. Furthermore, using a direct binding free energy calculation protocol, we determine the ligand binding free energies for each of the identified sites using long time scale simulations. The free energies differ by 0.77 to 7.26 kcal/mol across individual trajectories depending on the binding site and the system. We show that, although this is the standard way such quantities are currently reported at long time scale, individual simulations do not yield reliable free energies. Ensembles of independent trajectories are necessary to overcome the aleatoric uncertainty in order to obtain statistically meaningful and reproducible results. Finally, we compare the application of different free energy methods to these systems and discuss their advantages and disadvantages. Our findings here are generally applicable to all molecular dynamics based applications and not confined to the free energy methods used in this study.
We subject a series of five protein-ligand systems which contain important SARS-CoV-2 targets - 3-chymotrypsin-like protease, papain-like protease and adenosine ribose phosphatase - to long- timescale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twelve 10-microsecond simulations for each system, we accurately and reproducibly determine ligand binding sites, both crystallographically resolved and otherwise, thereby discovering binding sites that can be exploited for drug discovery. We also report robust, ensemble-based observation of conformational changes that occur at the main binding site of 3CLPro due to the presence of another ligand at an allosteric binding site. We investigate the reliability and accuracy of long-timescale trajectories. Due to the chaotic nature of molecular dynamics trajectories, individual trajectories do not allow for accurate or reproducible elucidation of macroscopic expectation values. Upon comparing the statistical distribution of protein-ligand contact frequencies for these ten/twelve 10- microsecond trajectories, we find that over 90% of trajectories have significantly different contact frequency distributions. Furthermore, using a direct binding free energy calculation protocol, we determine the ligand binding free energies for each of the identified sites using the long-timescale simulations. The free energies differ by 0.77 to 7.26 kcal/mol across individual trajectories depending on the binding site and the system. We show that although this is the standard way such quantities are currently reported at long-timescale, individual simulation does not yield reliable free energy. Ensembles of independent trajectories are necessary to overcome the aleatoric uncertainty in order to obtain statistically meaningful and reproducible results. Our findings here are generally applicable to all molecular dynamics based applications and not just confined to free energy methods used in this study. Finally, we compare the application of different free energy methods to these systems and discuss their advantages and disadvantages.
We subject a series of five protein-ligand systems which contain important SARS-CoV-2 targets - 3-chymotrypsin-like protease, papain-like protease and adenosine ribose phosphatase - to long- timescale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twelve 10-microsecond simulations for each system, we accurately and reproducibly determine ligand binding sites, both crystallographically resolved and otherwise, thereby discovering binding sites that can be exploited for drug discovery. We also report robust, ensemble-based observation of conformational changes that occur at the main binding site of 3CLPro due to the presence of another ligand at an allosteric binding site explaining the underlying cascade of events responsible for its inhibitory effect. Using our simulations, we have discovered a novel allosteric mechanism of inhibition for a ligand known to bind only at the substrate binding site. Due to the chaotic nature of molecular dynamics trajectories, individual trajectories do not allow for accurate or reproducible elucidation of macroscopic expectation values. Unprecedented at this timescale, we compare the statistical distribution of protein-ligand contact frequencies for these ten/twelve 10-microsecond trajectories and find that over 90% of trajectories have significantly different contact frequency distributions. Furthermore, using a direct binding free energy calculation protocol, we determine the ligand binding free energies for each of the identified sites using long-timescale simulations. The free energies differ by 0.77 to 7.26 kcal/mol across individual trajectories depending on the binding site and the system. We show that although this is the standard way such quantities are currently reported at long-timescale, individual simulation does not yield reliable free energies. Ensembles of independent trajectories are necessary to overcome the aleatoric uncertainty in order to obtain statistically meaningful and reproducible results. Our findings here are generally applicable to all molecular dynamics based applications and not just confined to free energy methods used in this study. Finally, we compare the application of different free energy methods to these systems and discuss their advantages and disadvantages.
We subject a series of five protein-ligand systems which contain important SARS- CoV-2 targets - 3-chymotrypsin-like protease, papain-like protease and adenosine ribose phosphatase - to long-timescale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twelve 10-microsecond simulations for each system, we accurately and reproducibly determine ligand binding sites, both crystallographically resolved and otherwise, thereby discovering binding sites that can be exploited for drug discovery. We also report robust, ensemble-based observation of conformational changes that occur at the main binding site of 3CLPro due to the presence of another ligand at an allosteric binding site explaining the underlying cascade of events responsible for its inhibitory effect. Using our simulations, we have discovered a novel allosteric mechanism of inhibition for a ligand known to bind only at the substrate binding site. Due to the chaotic nature of molecular dynamics trajectories, individual trajectories do not allow for accurate or reproducible elucidation of macroscopic expectation values. Unprecedentedly at this timescale, we compare the statistical distribution of protein-ligand contact frequencies for these ten/twelve 10-microsecond trajectories and find that over 90% of trajectories have significantly different contact frequency distributions. Furthermore, using a direct binding free energy calculation protocol, we determine the ligand binding free energies for each of the identified sites using long-timescale simulations. The free energies differ by 0.77 to 7.26 kcal/mol across individual trajectories depending on the binding site and the system. We show that although this is the standard way such quantities are currently reported at long-timescale, individual simulations do not yield reliable free energies. Ensembles of independent trajectories are necessary to overcome the aleatoric uncertainty in order to obtain statistically meaningful and reproducible results. Our findings here are generally applicable to all molecular dynamics based applications and not confined to the free energy methods used in this study. Finally, we compare the application of different free energy methods to these systems and discuss their advantages and disadvantages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.