Abstract. We generalize the definition and enumeration of spanning trees from the setting of graphs to that of arbitrary-dimensional simplicial complexes ∆, extending an idea due to G. Kalai. We prove a simplicial version of the Matrix-Tree Theorem that counts simplicial spanning trees, weighted by the squares of the orders of their top-dimensional integral homology groups, in terms of the Laplacian matrix of ∆. As in the graphic case, one can obtain a more finely weighted generating function for simplicial spanning trees by assigning an indeterminate to each vertex of ∆ and replacing the entries of the Laplacian with Laurent monomials. When ∆ is a shifted complex, we give a combinatorial interpretation of the eigenvalues of its weighted Laplacian and prove that they determine its set of faces uniquely, generalizing known results about threshold graphs and unweighted Laplacian eigenvalues of shifted complexes.
Abstract. We show that the combinatorial Laplace operators associated to the boundary maps in a shifted simplicial complex have all integer spectra. We give a simple combinatorial interpretation for the spectra in terms of vertex degree sequences, generalizing a theorem of Merris for graphs.We also conjecture a majorization inequality for the spectra of these Laplace operators in an arbitrary simplicial complex, with equality achieved if and only if the complex is shifted. This generalizes a conjecture of Grone and Merris for graphs.
Abstract. A long-standing conjecture of Stanley states that every CohenMacaulay simplicial complex is partitionable. We disprove the conjecture by constructing an explicit counterexample. Due to a result of Herzog, Jahan and Yassemi, our construction also disproves the conjecture that the Stanley depth of a monomial ideal is always at least its depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.