Cadmium (Cd) is a widespread, naturally occurring element present in soil, rock, water, plants and animals. Cd is a non-essential element for plants and is toxic at higher concentrations. Transcript profiles of roots of Arabidopsis thaliana (Arabidopsis) and Thlaspi caerulescens plants exposed to Cd and zinc (Zn) are examined, with the main aim to determine the differences in gene expression between the Cd-tolerant Zn-hyperaccumulator T. caerulescens and the Cd-sensitive non-accumulator Arabidopsis. This comparative transcriptional analysis emphasized the role of genes involved in lignin, glutathione and sulphate metabolism. Furthermore the transcription factors MYB72 and bHLH100 were studied for their involvement in metal homeostasis, as they showed an altered expression after exposure to Cd. The Arabidopsis myb72 knockout mutant was more sensitive to excess Zn or iron (Fe) deficiency than wild type, while Arabidopsis transformants overexpressing bHLH100 showed increased tolerance to high Zn and nickel (Ni) compared to wild-type plants, confirming their role in metal homeostasis in Arabidopsis.
In this review, we describe the need and progress to improve the iron and zinc contents in crop plants by genetic means. To achieve this goal either by transgenic approaches or classical breeding, knowledge about the physiological and molecular mechanisms of mineral uptake and mineral homeostasis will be very helpful. The progress in our understanding of the molecular processes and genes is described, and the use of the identified genes by transgenic approaches is illustrated. Genetic mapping of the existing variation will allow marker‐assisted breeding to exploit the available natural variation in crop plants. For this application, ultimately the knowledge of the genes underlying this quantitative variation, called quantitative trait loci (QTL), will be required. It is expected that research in this field in the model species Arabidopsis thaliana, where the molecular tools are available, might help in the identification of the allelic variation at QTL.
The regulation of mineral accumulation in plants is genetically complex, with several genetic loci involved in the control of one mineral and loci affecting the accumulation of different minerals. To investigate the role of growth medium and organ type on the genetics of mineral accumulation, two existing (LerxKond, LerxAn-1) and one new (LerxEri-1) Arabidopsis thaliana Recombinant Inbred Line populations were raised on soil and hydroponics as substrates. Seeds, roots, and/or rosettes were sampled for the determination of their Ca, Fe, K, Mg, Mn, P or Zn concentrations. For seeds only, the concentration of phytate (IP6), a strong chelator of seed minerals, was determined. Correlations between minerals/IP6, populations, growth conditions, and organs were determined and mineral/IP6 concentration data were used to identify quantitative trait loci (QTLs) for these traits. A striking difference was found between QTLs identified for soil-grown versus hydroponics-grown populations and between QTLs identified for different plant organs. Three common QTLs were identified for several populations, growth conditions, and organs, one of which corresponded to the ERECTA locus, variation of which has a strong effect on plant morphology.
Summary• Rosettes of 25 Arabidopsis thaliana accessions and an Antwerp-1 (An-1) × Landsberg erecta (Ler) population of recombinant inbred lines (RILs) grown in optimal watering conditions (OWC) and water deficit conditions (WDC) were analysed for mineral concentrations to identify genetic loci involved in adaptation of mineral homeostasis to drought stress.• Correlations between mineral concentrations were determined for accessions and a quantitative trait locus (QTL) analysis was performed for the RIL population.• Plant growth and rosette mineral contents strongly decreased in WDC compared with OWC. Mineral concentrations also generally decreased, except for phosphorus (P), which remained constant, and potassium (K), which increased. Large variations in mineral concentrations were observed among accessions, mostly correlated with total rosette leaf area. Mineral concentration QTLs were identified in the RIL population, but only a few were common for both conditions. Clusters of mineral concentration QTLs often cosegregated with dry weight QTLs.• Water deficit has a strong effect on rosette mineral status. This is genetically determined and seems largely a pleiotropic effect of the reduction in growth. The low number of common mineral concentration QTLs, shared among different RIL populations, tissues and conditions in Arabidopsis, suggests that breeding for robust, mineral biofortified crops will be complex.
The heavy metal hyperaccumulator Thlaspi caerulescens expresses several ZIP-like genes at higher levels than their orthologues in non-hyperaccumulator species, but it is not clear why. To elucidate the function of the T. caerulescens orthologues of the Arabidopsis thaliana ZIP5 and ZIP6 genes, full-length cDNAs of TcZNT5-LC and TcZNT6-LC were cloned, their expression was examined and genes were expressed in A. thaliana. Transcript level analysis revealed the constitutively high expression of these two genes in T. caerulescens compared to AtZIP5 and AtZIP6 genes and differential expression of both genes when comparing two accessions of T. caerulescens with different metal accumulation properties. Expression of TcZNT5-LC in A. thaliana did not modify Cd or Zn tolerance, but mildly affected the root and shoot Zn concentrations towards a hyperaccumulator shoot to root concentration ratio. A. thaliana zip5 knock-out mutants showed increased tolerance to Cd and decreased seed mineral concentrations. Expression of TcZNT6-LC enhanced the Cd sensitivity of A. thaliana, but no phenotype was observed for the zip6 mutant. In conclusion, the changes in expression of TcZNT5-LC and TcZNT6-LC upon changes in Zn or Cd exposure indicate both genes act in metal homeostasis, but their CaMV 35S-mediated expression in A. thaliana does not create T. caerulescens hyperaccumulator phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.