Dynamic workloads in cloud computing can be managed through live migration of virtual machines from overloaded or underloaded hosts to other hosts to save energy and/or mitigate performance-related Service Level Agreement (SLA) violations. The challenging issue is how to detect when a host is overloaded to initiate live migration actions in time. In this paper, a new approach to make long-term predictions of resource demands of virtual machines for host overload detection is presented. To take into account the uncertainty of long-term predictions, a probability distribution model of the prediction error is built. Based on the probability distribution of the prediction error, a decision-theoretic approach is proposed to make live migration decision that take into account live migration overheads. Experimental results using the CloudSim simulator and PlanetLab workloads show that the proposed approach achieves better performance and higher stability compared to other approaches that do not take into account the uncertainty of long-term predictions and the live migration overhead.
Abstract-The Infrastructure-as-a-Service model of cloud computing allocates resources in the form of virtual machines that can be resized and live migrated at runtime. This paper presents a novel distributed resource allocation approach for VM consolidation relying on multi-agent systems. Our approach uses a utility function based on host CPU utilization to drive live migration actions. Experimental results show reduced service level agreement violations and a better overall performance compared to a centralized approach and a threshold-based distributed approach.
In a cloud computing the live migration of virtual machines shows a process of moving a running virtual machine from source physical machine to the destination, considering the CPU, memory, network, and storage states. Various performance metrics are tackled such as, downtime, total migration time, performance degradation, and amount of migrated data, which are affected when a virtual machine is migrated. This paper presents an overview and understanding of virtual machine live migration techniques, of the different works in literature that consider this issue, which might impact the work of professionals and researchers to further explore the challenges and provide optimal solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.