Lack of fast and strong actuators to drive microsystems is well recognized. Electrochemical actuators are considered attractive for many applications but they have long response time (minutes) due to slow gas termination. Here an electrochemical actuator is presented for which the response time can be as short as 1ms. The alternating polarity water electrolysis is used to drive the device. In this process only nanobubbles are formed. The gas in nanobubbles can be terminated fast due to surface assisted reaction between hydrogen and oxygen that happens at room temperature. The working chamber of the actuator contains concentric titanium electrodes; it has a diameter of 500 µm and a height of 8 µm. The chamber is sealed by a polydimethylsiloxane (PDMS) membrane of 30µm thick. The device is characterized by an interferometer and a fast camera. Cyclic operation at frequency up to 667 Hz with a stroke of about 30% of the chamber volume is demonstrated. The cycles repeat themselves with high precision providing the volume strokes in picoliter range. Controlled explosions in the chamber can push the membrane up to 90 µm.
Electrochemical microactuators and micropumps are too slow for many applications. The use of the alternating polarity electrolysis can strongly reduce the response time of such devices. We investigate a powerful pumping regime of a simple valveless micropump made from polydimethylsiloxane on a glass substrate. Microsecond dynamics of the gas bubbles in the chamber is monitored with fast cameras. After an incubation period of 10–100 ms a microbubble filling the entire chamber pops up in less than
100
μ
s and disappears in 10 ms. This bubble pushes liquid out and drives the pump. The phenomenon is interpreted as an explosion of the microbubble containing a mixture of H2 and O2 gases. For higher amplitude of the driving pulses the incubation time can be as short as 1–2 ms but many uncorrelated microbubbles are formed in the chamber, and disappear in 1 ms. As the result a less powerful but faster pumping is possible. A few principles allowing further improve the micropump characteristics are formulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.