Elastodynamic response of anisotropic laminate composite structures subjected to a force loading is evaluated based on the integral representations in terms of Green's matrices. Explicit and asymptotic expressions for guided waves generated by a given source are then obtained from those integrals by means of series expansions and the residue technique. Unlike to conventional modal expansions, such representations keep information about the source, giving an opportunity for a quantitative near- and far-field analysis of generated waves. An effective computer implementation is achieved by the use of fast and stable algorithms for the Green matrix, pole, and residue calculations. The potential of the model is demonstrated by examples of anisotropy manifestation in the directivity of radiated waves. The effect of main energy outflow in the direction of either upper- or inner-ply orientation depending on the source size and frequency is discussed.
An explicit expression for the group velocity of wave packets, propagating in a laminate anisotropic composite plate in prescribed directions, is proposed. It is based on the cylindrical guided wave asymptotics derived from the path integral representation for wave fields generated in the composites by given localized sources. The expression derived is theoretically confirmed by the comparison with a known representation for the group velocity vector of a plane guided wave. Then it is experimentally validated against laser vibrometer measurements of guided wave packets generated by a piezoelectric wafer active sensor in a composite plate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.