We present a categorical point of view on dynamical quantum groups in terms of categories of Harish-Chandra bimodules. We prove Tannaka duality theorems for forgetful functors into the monoidal category of Harish-Chandra bimodules in terms of a slight modification of the notion of a bialgebroid. Moreover, we show that the standard dynamical quantum groups
$F(G)$
and
$F_q(G)$
are related to parabolic restriction functors for classical and quantum Harish-Chandra bimodules. Finally, we exhibit a natural Weyl symmetry of the parabolic restriction functor using Zhelobenko operators and show that it gives rise to the action of the dynamical Weyl group.
We present a categorical point of view on dynamical quantum groups in terms of categories of Harish-Chandra bimodules. We prove Tannaka duality theorems for forgetful functors into the monoidal category of Harish-Chandra bimodules in terms of a slight modification of the notion of a bialgebroid. Moreover, we show that the standard dynamical quantum groups F (G) and Fq(G) are related to parabolic restriction functors for classical and quantum Harish-Chandra bimodules. Finally, we exhibit a natural Weyl symmetry of the parabolic restriction functor using Zhelobenko operators and show that it gives rise to the action of the dynamical Weyl group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.