-Data on the first appearances of major animal groups with mineralized skeletons on the Siberian Platform and worldwide are revised and summarized herein with references to an improved carbon isotope stratigraphy and radiometric dating in order to reconstruct the Cambrian radiation (popularly known as the 'Cambrian explosion') with a higher precision and provide a basis for the definition of Cambrian Stages 2 to 4. The Lophotrochozoa and, probably, Chaetognatha were first among protostomians to achieve biomineralization during the Terreneuvian Epoch, mainly the Fortunian Age. Fast evolutionary radiation within the Lophotrochozoa was followed by radiation of the sclerotized and biomineralized Ecdysozoa during Stage 3. The first mineralized skeletons of the Deuterostomia, represented by echinoderms, appeared in the middle of Cambrian Stage 3. The fossil record of sponges and cnidarians suggests that they acquired biomineralized skeletons in the late Neoproterozoic, but diversification of both definite sponges and cnidarians was in parallel to that of bilaterians. The distribution of calcium carbonate skeletal mineralogies from the upper Ediacaran to lower Cambrian reflects fluctuations in the global ocean chemistry and shows that the Cambrian radiation occurred mainly during a time of aragonite and high-magnesium calcite seas.
The distribution of all known Cambrian echinoderm taxa, encompassing both articulated specimens and taxonomically diagnostic isolated ossicles, is documented for the first time. The database described by 2011 comprises 188 species recorded from 65 formations from around the world. Formations that have yielded articulated echinoderms are unequally distributed in space and time. Only Laurentia and West Gondwana provide reasonably complete records at the resolution of Stage. The review of the biogeographical distributions of the eight major echinoderm clades shows that faunas from Laurentia and Northeast Gondwana (China and Korea) are distinct from those of West Gondwana and Southeast Gondwana (Australia); other regions are too poorly sampled to make firm palaeobiogeographical statements. Analysis of alpha diversity (species per formation) shows that diversity rose initially to Cambrian Stage 5, declined into Guzhangian and Paibian before returning to Stage 5 levels by the end of the Cambrian. This pattern is replicated in Laurentia and West Gondwana. We show that taxonomically diagnostic ossicles found in isolation typically occur significantly earlier than the first articulated specimens of the same taxa and provide important information on the first occurrence and palaeobiogeographical distribution of key taxa, and of the phylum as a whole.Supplementary material:Articulated Cambrian echinoderms and Isolated plates of Cambrian echinoderms are provided at:http://www.geolsoc.org.uk/SUP18668
Numerous new cases of preserved shell microstructure were discovered in molluscs from the Middle Cambrian Gowers Formation (Ptychagnostus atavus ⁄ Peronopsis opimus Zone, Floran Stage) in the Georgina Basin, Australia. The new data provide further evidence that, by the Middle Cambrian, molluscan shell microstructures were diverse, and many molluscs had a complex shell with multiple types of shell microstructure. In addition, many new occurrences of laminar microstructures are described herein. For many, the nature of these laminar microstructures is not known, but in three species the microstructure is foliated calcite, and in at least two the microstructure is more likely to have been calcitic semi-nacre, a type of microstructure known in brachiopods and bryozoans but unknown in modern molluscs. This commonality among these three closely related lophotrochozoans underscores a similar mechanism of biomineralization. Moreover, these observations suggest a prevalence of calcite-shelled lineages among molluscs from the Middle Cambrian, a time of calcite seas. In addition, the broad occurrence of laminar, nacre-like microstructures in many of these fossils reveals how widespread these strong (fractureresistant) microstructures were in Middle Cambrian molluscs. Additionally, a few specimens of Yochelcionella preserve imprints of a bilaterally symmetrical pair of muscle scars. New taxa described here include Corystos thorntoniensis gen. et sp. nov., Yochelcionella snorkorum sp. nov., Yochelcionella saginata sp. nov., and Anhuiconus? agrenon sp. nov.
A high-resolution carbon isotope profile through the uppermost Neoproterozoic–Lower Cambrian part of the Sukharikha section at the northwestern margin of the Siberian platform shows prominent secular oscillations of δ13C with peak-to-peak range of 6–10 ‰. There are six minima, 1n–6n, and seven maxima 1p–7p, in the Sukharikha Formation and a rising trend of δ13C from the minimum 1n of − 8.6 ‰ to maximum 6p of + 6.4 ‰. The trough 1n probably coincides with the isotopic minimum at the Precambrian–Cambrian boundary worldwide. Highly positive δ13C values of peaks 5p and 6p are typical of the upper portion of the Precambrian–Cambrian transitional beds just beneath the Tommotian Stage in Siberia. A second rising trend of δ13C is observed through the Krasnoporog and lower Shumny formations. It consists of four excursions with four major maxima that can be correlated with Tommotian–Botomian peaks II, IV, V, and VII of the reference profile from the southeastern Siberian platform. According to the chemostratigraphic correlation, the first appearances of the index forms of archaeocyaths are earlier in the Sukharikha section than in the Lena–Aldan region.
Markuelia is a vermiform, annulated introvertan animal known as embryonic fossils from the Lower Cambrian to Lower Ordovician. Analysis of an expanded and revised dataset for Introverta shows that the precise position of Markuelia within this clade is dependent on the taxa included. As a result, Markuelia is assigned to the scalidophoran total group to reflect uncertainty as to whether it is a stem-scalidophoran or a stem-priapulid. The taxonomy of the genus is revised to provide an improved taxonomic framework for material assigned to Markuelia. Five species are recognized: M. secunda Val'kov, M. hunanensis Dong and Donoghue, M. lauriei Haug et al., M. spinulifera sp. nov. and M. waloszeki sp. nov. Finally, the preservation of Markuelia is evaluated in the light of both the taphonomy of the fossil embryos themselves and the experimental taphonomy of the priapulid Priapulus caudatus, which has been proposed as both a close relative and an anatomical analogue of Markuelia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.