The RNA genome of retroviruses is encased within a protein capsid. To gather insight into the assembly and function of this capsid, we used electron cryotomography to image human immunodeficiency virus (HIV) and equine infectious anemia virus (EIAV) particles. While the majority of viral cores appeared closed, a variety of unclosed structures including rolled sheets, extra flaps, and cores with holes in the tip were also seen. Simulations of nonequilibrium growth of elastic sheets recapitulated each of these aberrations and further predicted the occasional presence of seams, for which tentative evidence was also found within the cryotomograms. To test the integrity of viral capsids in vivo, we observed that ∼25% of cytoplasmic HIV complexes captured by TRIM5α had holes large enough to allow internal green fluorescent protein (GFP) molecules to escape. Together, these findings suggest that HIV assembly at least sometimes involves the union in space of two edges of a curling sheet and results in a substantial number of unclosed forms.
We study the spontaneous assembly of viral shells composed of several identical subunits under nonequilibrium conditions. We find that within the basic continuum elasticity framework, the nonequilibrium assembly process is able to predict the formation of structures pertinent to retroviruses. Our minimal model of assembly yields a unified one-dimensional phase diagram in which the appearance of spherical, irregular, conical and cylindrical structures of retroviruses is seen to be governed by the spontaneous curvature of protein subunits.
We discuss the far-from-equilibrium interfacial phenomena occurring in the multilayer homoepitaxial growth and erosion on (110) crystal surfaces. Experimentally, these rectangular symmetry surfaces exhibit a multitude of interesting nonequilibrium interfacial structures, such as the rippled one-dimensional periodic states that are not present in the homoepitaxial growth and erosion on the high symmetry (100) and (111) crystal surfaces. Within a unified phenomenological model, we reveal and elucidate this multitude of states on (110) surfaces as well as the transitions between them. By analytic arguments and numerical simulations, we address experimentally observed transitions between two types of rippled states on (110) surfaces. We discuss several intermediary interface states intervening, via consecutive transitions, between the two rippled states. One of them is the rhomboidal pyramid state, theoretically predicted by Golubovic [Phys. Rev. Lett. 89, 266104 (2002)] and subsequently seen, by de Mongeot and co-workers, in the epitaxial erosion of Cu(110) and Rh(110) surfaces [A. Molle, Phys. Rev. Lett. 93, 256103 (2004), and A. Molle, Phys. Rev. B 73, 155418 (2006)]. In addition, we find a number of interesting intermediary states having structural properties somewhere between those of rippled and pyramidal states. Prominent among them are the rectangular rippled states of long rooflike objects (huts) recently seen on Ag(110) surface. We also predict the existence of a striking interfacial structure that carries nonzero, persistent surface currents. Periodic surface currents vortex lattice formed in this so-called buckled rippled interface state is a far-from-equilibrium relative of the self-organized convective flow patterns in hydrodynamic systems. We discuss the coarsening growth of the multitude of the interfacial states on (110) crystal surfaces.
We study nonequilibrium interfacial states in multilayer epitaxial growth and erosion on rectangular symmetry crystal surfaces. We elucidate a recently observed transition between two kinds of rippled states on (110) surfaces. We predict several novel interface states intervening, via consecutive transitions, between the two rippled states. We predict coarsening laws of the dynamics of the rippled and the intervening states on (110) crystal surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.