The influence of Cu doping on structural and magnetic properties of Ni50-xMn36Sn14-yCux, y (x=0, 1,2 and y=1 at. %) ribbons has been investigated. The crystalline structures of the alloys were resolute by X-ray diffraction (XRD). It is found that the addition of Cu for Ni stabilizes austenite phase, whereas, replacing small amount of Cu for Sn stabilizes modulated martensite phase. Differential scanning calorimetry measurements have proved the characteristic transformation temperatures. The transformation temperatures generally rise as increasing the Cu content. Therefore, the magneto structural transition, analysed by vibrating sample magnetometry, is tuned by appropriate Cu doping in the alloys. Likewise, both martensitic and austenitic states exhibit ferromagnetic behaviour.
Co2Fe0.4Mn0.6Si (CFMS) and Co2FeGa0.5Ge0.5 (CFGG) Heusler alloys are among the most promising thin film materials for spintronic devices due to a high spin polarization, low magnetic damping and giant/tunneling magnetoresistance ratios. Despite numerous investigations of Heusler alloys magnetic properties performed up to now, magnetoelastic effects in these materials remain not fully understood; due to quite rare studies of correlations between magnetoelastic and other magnetic properties, such as magnetic dissipation or magnetic anisotropy. In this research we have investigated epitaxial CFMS and CFGG Heusler alloys thin films of thickness in the range of 15–50 nm. We have determined the magnetoelastic tensor components and magnetic damping parameters as a function of the magnetic layer thickness. Magnetic damping measurements revealed the existence of non-Gilbert dissipation related contributions, including two-magnon scattering and spin pumping phenomena. Magnetoelastic constant B11 values and the effective magnetic damping parameter αeff values were found to be in the range of − 6 to 30 × 106 erg/cm3 and between 1 and 12 × 10–3, respectively. The values of saturation magnetostriction λS for CFMS Heusler alloy thin films were also obtained using the strain modulated ferromagnetic resonance technique. The correlation between αeff and B11, depending on magnetic layer thickness was determined based on the performed investigations of the above mentioned magnetic properties.
We have performed electron transport and ARPES measurements on single crystals of transition metal dipnictide TaA$s_{2}$ cleaved along the ($\overline{2}$ 0 1) surface which has the lowest cleavage energy. A Fourier transform of the Shubnikov-de Haas oscillations shows four different peaks whose angular dependence was studied with respect to the angle between magnetic field and the [$\overline{2}$ 0 1] direction. The results indicate elliptical shape of the Fermi surface cross-sections. Additionally, a mobility spectrum analysis was carried out, which also reveals at least four types of carriers contributing to the conductance (two kinds of electrons and two kinds of holes). ARPES spectra were taken on freshly cleaved ($\overline{2}$ 0 1) surface and it was found that bulk states pockets at constant energy surface are elliptical, which confirms the magnetotransport angle dependent studies. First-principles calculations support the interpretation of the experimental results. The theoretical calculations better reproduce the ARPES data if the theoretical Fermi level is increased, which is due to a small n-doping of the samples. This shifts the Fermi level closer to the Dirac point, allowing investigating the physics of the Dirac and Weyl points, making this compound a platform for the investigation of the Dirac and Weyl points in three-dimensional materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.