Norepinephrine is one of the key neurotransmitters in the hippocampus, but its role in the functioning of the neuroglial networks remains unclear. Here we show that norepinephrine suppresses NH4Cl‐induced oscillations of the intracellular Ca2+ concentration ([Ca2+]i) in hippocampal neurons. We found that the inhibitory effect of norepinephrine against ammonium‐induced [Ca2+]i oscillations is mediated by activation of alpha‐2 adrenergic receptors. Furthermore, UK 14,304, an agonist of alpha‐2 adrenergic receptors, evokes a biphasic [Ca2+]i elevation in a minor population of astrocytes. This elevation consists of an initial fast, peak‐shaped [Ca2+]i rise, mediated by Giβγ subunit and subsequent PLC‐induced mobilization of Ca2+ from internal stores, and a plateau phase, mediated by a Ca2+ influx from the extracellular medium through store‐operated and TRPC3 channels. We show the correlation between the Ca2+ response in astrocytes and suppression of [Ca2+]i oscillations in neurons. The inhibitory effect of UK 14,304 is abolished in the presence of gallein, an inhibitor of Gβγ‐signaling. In turn, application of the agonist in the presence of the PLC inhibitor decreases the frequency and amplitude of [Ca2+]i oscillations in neurons but does not suppress them. The same effect is observed in the presence of bicuculline, a GABA(A) receptor antagonist. We demonstrate that UK 14,304 application increases the frequency and amplitude of slow outward chloride currents in neurons, indicating the release of GABA by astrocytes. Thus, our findings indicate that the activation of astrocytic alpha‐2 adrenergic receptors stimulates GABA release from astrocytes via Giβγ subunit‐associated signaling pathway, contributing to the suppression of neuronal activity.
Epileptic discharges manifest in individual neurons as abnormal membrane potential fluctuations called paroxysmal depolarization shift (PDS). PDSs can combine into clusters that are accompanied by synchronous oscillations of the intracellular Ca2+ concentration ([Ca2+]i) in neurons. Here, we investigate the contribution of L-type voltage-gated calcium channels (VGCC) to epileptiform activity induced in cultured hippocampal neurons by GABA(A)R antagonist, bicuculline. Using KCl-induced depolarization, we determined the optimal effective doses of the blockers. Dihydropyridines (nifedipine and isradipine) at concentrations ≤ 10 μM demonstrate greater selectivity than the blockers from other groups (phenylalkylamines and benzothiazepines). However, high doses of dihydropyridines evoke an irreversible increase in [Ca2+]i in neurons and astrocytes. In turn, verapamil and diltiazem selectively block L-type VGCC in the range of 1–10 μM, whereas high doses of these drugs block other types of VGCC. We show that L-type VGCC blockade decreases the half-width and amplitude of bicuculline-induced [Ca2+]i oscillations. We also observe a decrease in the number of PDSs in a cluster and cluster duration. However, the pattern of individual PDSs and the frequency of the cluster occurrence change insignificantly. Thus, our results demonstrate that L-type VGCC contributes to maintaining the required [Ca2+]i level during oscillations, which appears to determine the number of PDSs in the cluster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.