Query Optimization is considered to be one of the most important challenges in database management. Existing built-in query optimizers are very complex and rely on various approximations and hand-picked rules. The rise of deep learning and deep reinforcement learning has aided many scientific and industrial fields, providing an opportunity to develop a learnable query optimizer. In this paper, we analyse and improve the state-of-the-art learned query optimizer, Neo for the JOB benchmark on two database systems: PostgreSQL and Huawei GaussDB. We describe our methods, based on combination of Neo, Tree-Transformers, auxiliary tasks, reward weighting. Combinations of these methods improve latency of the found query execution plans. We also conduct a thorough analysis of the resulting execution plans and devise a set of decision-based rules to indicate the cases when the learned optimizer will outperform the built-in one. We also provide a source code for the proposed methods and experiments. Finally, we provide possible directions for further improvement in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.