High-entropy nanomaterials possessing high accessible surface areas have demonstrated outstanding catalytic performance, beating that found for noble metals. In this communication, we report about the synthesis of a new, nanoporous, high-entropy alloy (HEA) possessing open porosity. The nanoporous, high-entropy Ta19.1Mo20.5Nb22.9V30Ni7.5 alloy (at%) was fabricated from a precursor (TaMoNbV)25Ni75 alloy (at%) by liquid metal dealloying using liquid magnesium (Mg). Directly after dealloying, the bicontinuous nanocomposite consisting of a Mg-rich phase and a phase with a bulk-centered cubic (bcc) structure was formed. The Mg-rich phase was removed with a 3M aqueous solution of nitric acid to obtain the open, porous, high-entropy Ta19.1Mo20.5Nb22.9V30Ni7.5 alloy (at%). The ligament size of this nanoporous HEA is about 69 ± 9 nm, indicating the high surface area in this material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.