The anterior temporal lobe (ATL), located at the tip of the human temporal lobes, has been heavily implicated in semantic processing by neuropsychological and functional imaging studies. These techniques have revealed a hemispheric specialization of ATL, but little about the time scale on which it operates. Here we show that ATL is specifically activated in intracerebral recordings when subjects discriminate the gender of an actor presented in a static frame followed by a video. ATL recording sites respond briefly (100 ms duration) to the visual static presentation of an actor in a task-, but not in a stimulus-duration-dependent way. Their response latencies correlate with subjects’ reaction times, as do their activity levels, but oppositely in the two hemispheres operating in a push-pull fashion. Comparison of ATL time courses with those of more posterior, less specific regions emphasizes the role of inhibitory operations sculpting the fast ATL responses underlying semantic processing.
Little is presently known about action observation, an important perceptual component of high-level vision. To investigate this aspect of perception, we introduce a two-alternative forced-choice task for observed manipulative actions while varying duration or signal strength by noise injection. We show that accuracy and reaction time in this task can be modeled by a diffusion process for different pairs of action exemplars. Furthermore, discrimination of observed actions is largely viewpoint-independent, cannot be reduced to judgments about the basic components of action: shape and local motion, and requires a minimum duration of about 150–200 ms. These results confirm that action observation is a distinct high-level aspect of visual perception based on temporal integration of visual input generated by moving body parts. This temporal integration distinguishes it from object or scene perception, which require only very brief presentations and are viewpoint-dependent. The applicability of a diffusion model suggests that these aspects of high-level vision differ mainly at the level of the sensory neurons feeding the decision processes.
Introduction Although it has become widely accepted that the action observation network ( AON ) includes three levels (occipito‐temporal, parietal and premotor), little is known concerning the specific role of these levels within perceptual tasks probing action observation. Recent single cell studies suggest that the parietal level carries the information required to discriminate between two‐alternative observed actions, but do not exclude possible contributions from the other two levels. Methods Two functional magnetic resonance imaging experiments used a task‐based attentional modulation paradigm in which subjects viewed videos of an actor performing a manipulative action on a coloured object, and discriminated between either two observed manipulative actions, two actors or two colours. Results Both experiments demonstrated that relative to actor and colour discrimination, discrimination between observed manipulative actions involved the putative human anterior intraparietal sulcus (ph AIP ) area in parietal cortex. In one experiment, where the observed actions also differed with regard to effectors, premotor cortex was also specifically recruited. Conclusions Our results highlight the primary role of parietal cortex in discriminating between two‐alternative observed manipulative actions, consistent with the view that this level plays a major role in representing the identity of an observed action.
Levelt’s four propositions (L1–L4), which characterize the relation between changes in “stimulus strength” in the two eyes and percept alternations, are considered benchmark for binocular rivalry models. It was recently demonstrated that adaptation mutual-inhibition models of binocular rivalry capture L4 only in a limited range of input strengths, predicting an increase rather than a decrease in dominance durations with increasing stimulus strength for weak stimuli. This observation challenges the validity of those models, but possibly L4 itself is invalid. So far, L1–L4 have been tested mainly by varying the contrast of static stimuli, but since binocular rivalry breaks down at low contrasts, it has been difficult to study L4. To circumvent this problem, and to test if the recent revision of L2 has more general validity, we studied changes in binocular rivalry evoked by manipulating coherence of oppositely-moving random-dot stimuli in the two eyes, and compared them against the effects of stimulus contrast. Thirteen human observers participated. Both contrast and coherence manipulations in one eye produced robust changes in both eyes; dominance durations of the eye receiving the stronger stimulus increased while those of the other eye decreased, albeit less steeply. This is inconsistent with L2 but supports its revision. When coherence was augmented in both eyes simultaneously, dominance durations first increased at low coherence, and then decreased for further increases in coherence. The same held true for the alternation periods. The initial increase in dominance durations was absent in the contrast experiments, but with coherence manipulations, rivalry could be tested at much lower stimulus strengths. Thus, we found that L4, like L2, is only valid in a limited range of stimulus strengths. Outside that range, the opposite is true. Apparent discrepancies between contrast and coherence experiments could be fully reconciled with adaptation mutual-inhibition models using a simple input transfer-function.
The processing steps that lead up to a decision, i.e., the transformation of sensory evidence into motor output, are not fully understood. Here, we combine stereoEEG recordings from the human cortex, with single-lead and time-resolved decoding, using a wide range of temporal frequencies, to characterize decision processing during a rule-switching task. Our data reveal the contribution of rostral inferior parietal lobule (IPL) regions, in particular PFt, and the parietal opercular regions in decision processing and demonstrate that the network representing the decision is common to both task rules. We reconstruct the sequence in which regions engage in decision processing on single trials, thereby providing a detailed picture of the network dynamics involved in decision-making. The reconstructed timeline suggests that the supramarginal gyrus in IPL links decision regions in prefrontal cortex with premotor regions, where the motor plan for the response is elaborated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.