We use the formalism of traces in higher categories to prove a common generalization of the holomorphic Atiyah-Bott fixed point formula and the Grothendieck-Riemann-Roch theorem. The proof is quite different from the original one proposed by Grothendieck et al.: it relies on the interplay between self dualities of quasi-and ind-coherent sheaves on X and formal deformation theory of Gaitsgory-Rozenblyum. In particular, we give a description of the Todd class in terms of the difference of two formal group structures on the derived loop scheme LX. The equivariant case is reduced to the non-equivariant one by a variant of the Atiyah-Bott localization theorem.
This work is devoted to the study of integral p-adic Hodge theory in the context of Artin stacks. For a Hodge-proper stack, using the formalism of prismatic cohomology, we establish a version of p-adic Hodge theory with the étale cohomology of the Raynaud generic fiber as an input. In particular, we show that the corresponding Galois representation is crystalline and that the associated Breuil-Kisin module is given by the prismatic cohomology. An interesting new feature of the stacky setting is that the natural map between étale cohomology of the algebraic and the Raynaud generic fibers is often an equivalence even outside of the proper case. In particular, we show that this holds for global quotients [X/G] where X is a smooth proper scheme and G is a reductive group. As applications we deduce Totaro's conjectural inequality and also set up a theory of A inf -characteristic classes.
We introduce a notion of a Hodge-proper stack and extend the method of Deligne-Illusie to prove the Hodgeto-de Rham degeneration in this setting. In order to reduce the statement in characteristic 0 to characteristic p, we need to find a good integral model of a stack (a so-called spreading), which, unlike in the case of schemes, need not to exist in general. To address this problem we investigate the property of spreadability in more detail by generalizing standard spreading out results for schemes to higher Artin stacks and showing that all proper and some global quotient stacks are Hodge-properly spreadable. As a corollary we deduce a (non-canonical) Hodge decomposition of the equivariant cohomology for certain classes of varieties with an algebraic group action.
We introduce a notion of a Hodge-proper stack and apply the strategy of Deligne and Illusie to prove the Hodge-to-de Rham degeneration in this setting. In order to reduce the statement in characteristic $0$ to characteristic $p$, we need to find a good integral model of a stack (namely, a Hodge-proper spreading), which, unlike in the case of proper schemes, need not to exist in general. To address this problem, we investigate the property of spreadability in more detail by generalizing standard spreading out results for schemes to higher Artin stacks and showing that all proper and some global quotient stacks are Hodge-properly spreadable. As a corollary, we deduce a (noncanonical) Hodge decomposition of the equivariant cohomology for certain classes of varieties with an algebraic group action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.