Approaches to estimate the number of almost periodic solutions of ordinary differential equations are considered. Conditions that allow determination for both upper and lower bounds for these solutions are found. The existence and stability of almost periodic problems are studied. The novelty of this paper lies in the fact that the use of apparatus derivatives allows for the reduction of restrictions on the degree of smoothness of the right parts. In the works of Lebedeva [1], regarding the number of periodic solutions of equations first order, they required a high degree of smoothness. Franco et al. required the smoothness of the second derivative of the Schwartz equation [2]. We have all of these restrictions lifted. Our new form presented also emphasizes this novelty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.