Many IoT devices are vulnerable to attacks due to flawed security designs and lacking mechanisms for firmware updates or patches to eliminate the security vulnerabilities. Device-type identification combined with data from vulnerability databases can pinpoint vulnerable IoT devices in a network and can be used to constrain the communications of vulnerable devices for preventing damage. In this contribution, we present and evaluate two deep learning approaches to the reliable IoT device-type identification, namely a recurrent and a convolutional network architecture. Both deep learning approaches show accuracies of 97% and 98%, respectively, and thereby outperform an up-to-date IoT device-type identification approach using hand-crafted fingerprint features obtaining an accuracy of 82%. The runtime performance for the IoT identification of both deep learning approaches outperforms the hand-crafted approach by three magnitudes. Finally, importance metrics explain the results of both deep learning approaches in terms of the utilization of the analyzed traffic data flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.